An unbalanced microbiome composition, known as dysbiosis, has been found in patients with diabetes, for whom the diversity of the gut microbiome is often reduced as compared to healthy people. Researchers from the University of Amsterdam recently showed that fecal transplants, used to transfer the microbiome of a healthy person to the gut of one with diabetes, can result in a short-term improvement of the insulin resistance found in obese patients with type 2 diabetes.

Diet management allows control and awareness of the types of nutrients entering the digestive system, and hence allows indirectly, significant control over changes in blood glucose levels. Blood glucose monitoring allows verification of these, and closer control, especially important since some symptoms of diabetes are not easy for the patient to notice without actual measurement.
To make matters worse for the inactive, carb addict, when the body senses glucose in the bloodstream, the pancreas releases a hormone called insulin (perhaps you’ve heard of it?) to signal the body to store the glucose as glycogen. If the glycogen receptors are full and it can’t do this, the body thinks that the cells didn’t get the message and releases even more insulin.
So you go to your doctor. What does he do? Instead of getting rid of the toxic sugar load, he doubles the dose of the medication. If the luggage doesn’t close, the solution is to empty it out, not use more force to . The higher dose of medication helps, but only for a time. Blood sugars go down as you force your body to gag down even more sugar. But eventually, this dose fails as well. So then your doctor gives you a second medication, then a third one and then eventually insulin injections.
Cinnamon has the ability to lower blood sugar levels and improve your sensitivity to insulin. A study conducted at Western University of Health Sciences in Pomona, Calif. found that the consumption of cinnamon is associated with a statistically significant decrease in plasma glucose levels, LDL cholesterol and triglyceride levels. Cinnamon consumption also helped increase HDL cholesterol levels. (15)
12. Consult a naturopathic, homeopathic, and/or Chinese medical doctor: Alternative practitioners are trained to treat the patient as a whole, organic being — not just their disease. This may help you develop a well-rounded treatment approach, as well as provide you with new information and perspectives on the disease and form of natural remedies for diabetes.

It’s the patients with type 2 diabetes that lean towards supplements. While lifestyle modifications (exercise, weight loss, and smoking cessation) are the foundation for managing diabetes, drug treatment is usually also required. There are an array of prescription drugs like metformin and glyburide with a long history of use and demonstrated efficacy. Some drugs even decrease mortality – the primary outcome we’re after. But proper treatment has also been shown to the reduce the risk of an array of other consequences: Diabetes is the biggest cause of blindness, kidney failure and non-traumatic amputation. Diabetes is associated with an elevated risk of cardiovascular disease, too. Yet despite the irreversible consequences of diabetes, and the availability of effective medications, type 2 diabetes remains poorly-controlled in many, often because of poor self-management.
HoneyColony and its materials are not intended to treat, diagnose, cure or prevent any disease. All material on HoneyColony is provided for educational purposes only. Always seek the advice of your physician or another qualified healthcare provider for any questions you have regarding a medical condition, and before undertaking any diet, exercise or other health related program.
In obese young people, decreased β-cell function has recently been shown to predict deterioration of glucose tolerance (4,78). Additionally, the rate of decline in glucose tolerance in first-degree relatives of type 2 diabetic individuals is strongly related to the loss of β-cell function, whereas insulin sensitivity changes little (79). This observation mirrors those in populations with a high incidence of type 2 diabetes in which transition from hyperinsulinemic normal glucose tolerance to overt diabetes involves a large, rapid rise in glucose levels as a result of a relatively small further loss of acute β-cell competence (3). The Whitehall II study showed in a large population followed prospectively that people with diabetes exhibit a sudden rise in fasting glucose as β-cell function deteriorates (Fig. 5) (80). Hence, the ability of the pancreas to mount a normal, brisk insulin response to an increasing plasma glucose level is lost in the 2 years before the detection of diabetes, although fasting plasma glucose levels may have been at the upper limit of normal for several years. This was very different from the widely assumed linear rise in fasting plasma glucose level and gradual β-cell decompensation but is consistent with the time course of markers of increased liver fat before the onset of type 2 diabetes observed in other studies (81). Data from the West of Scotland Coronary Prevention Study demonstrated that plasma triacylglycerol and ALT levels were modestly elevated 2 years before the diagnosis of type 2 diabetes and that there was a steady rise in the level of this liver enzyme in the run-up to the time of diagnosis (75).
The diabetes market is expected to reach a massively big €86Bn by 2025 combining both type 1 (€32Bn) and type 2 (€54Bn) treatments, and we can expect all sort of revolutionary technologies to come forward and claim their market share. Researchers are already speculating about microchips that can diagnose diabetes type 1 before the symptoms appear or nanorobots traveling in the bloodstream while they measure glucose and deliver insulin.
Type 2 diabetes is on the rise and is associated with insulin resistance. There are many factors which contribute to developing this disease some of which are modifiable and some of which are nonmodifiable. Modifiable risks which individuals can impact include weight, diet and exercise. It has been reported that gastric bypass patients who have T2DM are “cured” of the disease after surgery. That is a more drastic measure which many people are not ready or willing to consider.
The twin cycle hypothesis of the etiology of type 2 diabetes. During long-term intake of more calories than are expended each day, any excess carbohydrate must undergo de novo lipogenesis, which particularly promotes fat accumulation in the liver. Because insulin stimulates de novo lipogenesis, individuals with a degree of insulin resistance (determined by family or lifestyle factors) will accumulate liver fat more readily than others because of higher plasma insulin levels. In turn, the increased liver fat will cause relative resistance to insulin suppression of hepatic glucose production. Over many years, a modest increase in fasting plasma glucose level will stimulate increased basal insulin secretion rates to maintain euglycemia. The consequent hyperinsulinemia will further increase the conversion of excess calories to liver fat. A cycle of hyperinsulinemia and blunted suppression of hepatic glucose production becomes established. Fatty liver leads to increased export of VLDL triacylglycerol (85), which will increase fat delivery to all tissues, including the islets. This process is further stimulated by elevated plasma glucose levels (85). Excess fatty acid availability in the pancreatic islet would be expected to impair the acute insulin secretion in response to ingested food, and at a certain level of fatty acid exposure, postprandial hyperglycemia will supervene. The hyperglycemia will further increase insulin secretion rates, with consequent enhancement of hepatic lipogenesis, spinning the liver cycle faster and driving the pancreas cycle. Eventually, the fatty acid and glucose inhibitory effects on the islets reach a trigger level that leads to a relatively sudden onset of clinical diabetes. Figure adapted with permission from Taylor (98).
Fasting is the simplest and fastest method to force your body to burn sugar for energy. Glucose in the blood is the most easily accessible source of energy for the body. Fasting is merely the flip side of eating – if you are not eating you are fasting. When you eat, your body stores food energy. When you fast, your body burns food energy. If you simply lengthen out your periods of fasting, you can burn off the stored sugar.
Aside from the financial costs of diabetes, the more frightening findings are the complications and co-existing conditions. In 2014, 7.2 million hospital discharges were reported with diabetes as a listed diagnosis. Patients with diabetes were treated for major cardiovascular diseases, ischemic heart disease, stroke, lower-extremity amputation and diabetic ketoacidosis.
Clearly separate from the characteristic lack of acute insulin secretion in response to increase in glucose supply is the matter of total mass of β-cells. The former determines the immediate metabolic response to eating, whereas the latter places a long-term limitation on total possible insulin response. Histological studies of the pancreas in type 2 diabetes consistently show an ∼50% reduction in number of β-cells compared with normal subjects (66). β-Cell loss appears to increase as duration of diabetes increases (67). The process is likely to be regulated by apoptosis, a mechanism known to be increased by chronic exposure to increased fatty acid metabolites (68). Ceramides, which are synthesized directly from fatty acids, are likely mediators of the lipid effects on apoptosis (10,69). In light of new knowledge about β-cell apoptosis and rates of turnover during adult life, it is conceivable that removal of adverse factors could result in restoration of normal β-cell number, even late in the disease (66,70). Plasticity of lineage and transdifferentiation of human adult β-cells could also be relevant, and the evidence for this has recently been reviewed (71). β-Cell number following reversal of type 2 diabetes remains to be examined, but overall, it is clear that at least a critical mass of β-cells is not permanently damaged but merely metabolically inhibited.
Studies conducted in the United States[43] and Europe[44] showed that drivers with type 1 diabetes had twice as many collisions as their non-diabetic spouses, demonstrating the increased risk of driving collisions in the type 1 diabetes population. Diabetes can compromise driving safety in several ways. First, long-term complications of diabetes can interfere with the safe operation of a vehicle. For example, diabetic retinopathy (loss of peripheral vision or visual acuity), or peripheral neuropathy (loss of feeling in the feet) can impair a driver’s ability to read street signs, control the speed of the vehicle, apply appropriate pressure to the brakes, etc.
It’s like packing your clothes into a suitcase. At first, the clothes go without any trouble. After a certain point, though, it is just impossible to jam in those last 2 T-shirts. You can’t close the suitcase. The luggage is now ‘resistant’ to the clothes. It’s waaayyy harder to put those last 2 T-shirts than the first 2. It’s the same overflow phenomenon. The cell is filled to bursting with glucose, so trying to force more in is difficult and requires much higher doses of insulin.
Testosterone replacement therapy may improve glucose tolerance and insulin sensitivity in diabetic hypogonadal men. The mechanisms by which testosterone decreases insulin resistance is under study.[81] Moreover, testosterone may have a protective effect on pancreatic beta cells, which is possibly exerted by androgen-receptor-mediated mechanisms and influence of inflammatory cytokines.[82]

Other medications such as metformin or the DPP4 drug class are weight neutral. While this won’t make things worse, they won’t make things better either. Since weight loss is the key to reversing type 2 diabetes, medications won’t make things better. Medications make blood sugars better, but not the diabetes. We can pretend the disease is better, but that doesn’t make it true.


To help patients learn to manage their diabetes successfully, the Diabetes Treatment Center at Desert Springs Hospital offers educational classes, as well as individualized appointments, (in both English and Spanish) on topics such as behavior change, goal setting, healthy eating concepts, carbohydrate counting, dining out, label reading, lipid, medication, stress and sick day management, benefits of exercise, prevention of complications and foot care. Special Gestational Diabetes Education classes are also available for women diagnosed with diabetes during pregnancy. Learn more about the Diabetes Care Education Series >
But look closer. The results may be statistically significant, but they’re not that impressive compared to medication. Cinnamon lowered A1C by 0.09%, versus the usual 1% with medication. Give A1c reflects overall glucose trends, cinnamon doesn’t look that impressive. Even at the extreme of the confidence interval, cinnamon has, at best, 10% of the efficacy of drug treatments. At worst, it’s completely ineffective.
In Type 2 diabetes, the insulin that is produced does not work effectively. This is referred to as “insulin resistance.” Previously referred to as “adult-onset diabetes,” Type 2 diabetes is the most common form and occurs most frequently in inactive, overweight adults. With rising rates of childhood obesity, we are now seeing Type 2 diabetes diagnosed in more children and teens. Type 2 diabetes is usually treated with a diet that promotes weight loss, exercise and oral medications. Over time, most with Type 2 diabetes produce less insulin. Because of this,insulin may also be required to treat Type 2 diabetes. 
Most lifestyle interventions focus on eating less and exercising more. But many patients have tried this and have seen minimal results, while also fighting unsustainable hunger and cravings. The problem with these programs is that they tend to be high in carbs, even if they are cutting back on calories. When you eat a high-carb diet, the resulting increase in your blood sugar triggers an insulin response in your body, and insulin blocks your body’s ability to burn fat. Insulin actively blocks the breakdown of stored body fat, meaning that as long as insulin is high, it will be very difficult to lose weight—even if you are eating very little.
O-3 oils, with both EPA and DHA, can help patients by lowering lipid panels (reduce triglycerides and cholesterol); reducing insulin resistance; reducing pain and inflammation so exercise and sleep are easier; reducing the risk of cardiovascular disease by lowering blood pressure; reducing the risk of dementia and Alzheimer’s disease; preventing and treating anxiety and depression; and promoting antioxidant actions in the body and brain to help reduce developing diabetic complications.
It’s like packing your clothes into a suitcase. At first, the clothes go without any trouble. After a certain point, though, it is just impossible to jam in those last 2 T-shirts. You can’t close the suitcase. The luggage is now ‘resistant’ to the clothes. It’s waaayyy harder to put those last 2 T-shirts than the first 2. It’s the same overflow phenomenon. The cell is filled to bursting with glucose, so trying to force more in is difficult and requires much higher doses of insulin.
Cutting out the refined, processed starches and sugars, BG rebound into a normal range very quickly. My experience is when people begin to be more conscious of their food intake and physical activity, which happens immediately after being diagnosed with pre diabetes or diabetes, they begin to make better food choices and cut out the foods they know are not healthy.
The new research ties in with recent thinking among experts about what happens when type 2 diabetes develops, says Domenico Accili, MD, chief of endocrinology at Columbia University Vagelos College of Physicians and Surgeons. "We have been talking for some time, that in diabetes, primarily type 2, the insulin-producing [beta] cell is not dead but simply inactive," he says. "If you put patients with diabetes on a diet, you can do marvels with their beta cells."
So you go to your doctor. What does he do? Instead of getting rid of the toxic sugar load, he doubles the dose of the medication. If the luggage doesn’t close, the solution is to empty it out, not use more force to . The higher dose of medication helps, for a time. Blood sugars go down as you force your body to gag down even more sugar. But eventually, this dose fails as well. So then your doctor gives you a second medication, then a third one and then eventually insulin injections.

The Diabetes Treatment Center at Desert Springs Hospital was the first inpatient diabetes program in the United States to earn a Certificate of Distinction for Advanced Inpatient Diabetes Care from The Joint Commission. This means that the Hospital meets rigorous standards to control patient blood-sugar levels while they are hospitalized — whether they are experiencing diabetes complications at the time or admitted for an unrelated condition. This is important since controlling blood glucose can be difficult when patients are fighting infections, stressed or on certain medications.
If you have type 1 diabetes, your pancreas no longer makes the insulin your body needs to use blood sugar for energy. You will need insulin in the form of injections or through use of a continuous pump. Learning to give injections to yourself or to your infant or child may at first seem the most daunting part of managing diabetes, but it is much easier that you think.
×