Imagine our bodies to be a sugar bowl. A bowl of sugar. When we are young, our sugar bowl is empty. Over decades, we eat too much of the wrong things – sugary cereals, desserts and white bread. The sugar bowl gradually fills up with sugar until completely full. The next time you eat, sugar comes into the body, but the bowl is full, so it spills out into the blood.
However, the alternate term “reversed” often being used, may confuse people and mistake the good control of diabetes (remission) as a complete cure. Unfortunately, there is no current long term cure yet, and if one had gained back the weight they had lost or went back to old lifestyle habits, Type 2 diabetes would come back and sign and symptoms would present.
Type 2 diabetes is usually first treated by increasing physical activity, and eliminating saturated fat and reducing sugar and carbohydrate intake with a goal of losing weight. These can restore insulin sensitivity even when the weight loss is modest, for example around 5 kg (10 to 15 lb), most especially when it is in abdominal fat deposits. Diets that are very low in saturated fats have been claimed to reverse insulin resistance.[79][80]
Practitioners agree that nutrition is the cornerstone of diabetes management, and that a range of nutrition intervention strategies can be used to meet the metabolic goals and individual preferences of the person with diabetes. However, there are significant differences in the approach and methodologies used by alternative and conventional practitioners to manage the disease. One difference is in terminology. When is remission really remission?

This type of discussion occurs all the time. A patient has been assessed by their physician, and informed that they have a medical problem of some sort. The patient, reluctant to accept the physician’s evaluation, heads to the pharmacy for a second opinion. In some cases, the patient may question the physician’s advice: “All my physician wants to do is prescribe drugs.” Yet there’s a disconnect when it comes to strategies for management. More often than not, non-drug approaches are rejected out-of-hand (probably because the sample I speak with have already made the decision to buy something). And in those that are leery of medical management, there’s often a willingness to consider anything that’s available without a prescription – particularly if it’s perceived as “natural.” Natural products are gentle, safe, and effective, while medicine is thought of as unnatural, harsh, and potentially dangerous. This is the appeal to nature fallacy, nothing more. Purveyors of supplements leverage the appeal to nature fallacy into the marketing strategy of choice for almost all supplements and “alternative” medicines.  And it leads to bad health care decisions.
Big pharma are in the early stages of developing their own cell therapy approaches for diabetes. Novo Nordisk, one of the largest providers of diabetes treatments, is bidding for stem cells and an encapsulation device, stating that the first clinical trial could take place in the “next few years.” Sanofi, also a big name in diabetes, is working with the German Evotec in a beta cell replacement therapy for diabetics.
Mr. Tutty said he jumped at the chance, becoming one of 30 men and women ages 25 to 80 to sign up. Mr. Tutty was one of 13 participants whose fasting plasma glucose dropped, and during the six-month follow-up remained below the seven millimole per liter (or 126 milligrams per deciliter) that defines diabetes. Although Mr. Tutty completed the study nearly three years ago, his fasting blood sugars continue to range from 5.2 to 5.6 mmol/L, he said.

The bottom line is that diabetes can be bad news—but this doesn’t have to be the case. Interventions can prevent or delay the disease in people with prediabetes. The Diabetes Prevention Program (DPP), a large study of people at high risk of diabetes, has established a prevention plan that’s both feasible and cost-effective. The DPP showed that weight loss and increased physical activity reduced the development of type 2 diabetes by 58% during a three-year period.
Recent research shows that the first step in Diabetes management should be for patients to be put on a low carb diet. Patients that are put on a high carb diet find it very difficult to maintain normal blood glucose levels. Patients that are put on a low carb or restricted carbohydrate diet, manage to maintain near normal blood glucose levels and A1cs.[29][30][31][32][33][34][35][36][37]

Studies conducted in the United States[43] and Europe[44] showed that drivers with type 1 diabetes had twice as many collisions as their non-diabetic spouses, demonstrating the increased risk of driving collisions in the type 1 diabetes population. Diabetes can compromise driving safety in several ways. First, long-term complications of diabetes can interfere with the safe operation of a vehicle. For example, diabetic retinopathy (loss of peripheral vision or visual acuity), or peripheral neuropathy (loss of feeling in the feet) can impair a driver’s ability to read street signs, control the speed of the vehicle, apply appropriate pressure to the brakes, etc.
Miscarriage is the medical term for the spontaneous loss of pregnancy from conception to 20 weeks gestation. Risk factors for a woman having a miscarriage include cigarette smoking, older maternal age, radiation exposure, previous miscarriage, maternal weight, illicit drug use, use of NSAIDs, and trauma or anatomical abnormalities to the uterus. There are five classified types of miscarriage: 1) threatened abortion; 2) incomplete abortion; 3) complete abortion; 4) missed abortion; and (5 septic abortion. While there are no specific treatments to stop a miscarriage, a woman's doctor may advise avoiding certain activities, bed rest, etc. If a woman believes she has had a miscarriage, she needs to seek prompt medical attention.
Diabetes is a well-established problem and a multi-billion dollar industry. It is medically characterized by Fasting Blood Glucose higher than 126 mg/dL , which ranges between 100-125 mg/dL are considered pre-diabetic and ranges below 99 mg/dL are considered normal. Studies are finding that a fasting blood glucose below 83 mg/dL is actually a better benchmark, as risk of heart disease begins to increase at anything above that.
Diabetes can be very complicated, and the physician needs to have as much information as possible to help the patient establish an effective management plan. Physicians may often experience data overload resulting from hundreds of blood-glucose readings, insulin dosages and other health factors occurring between regular office visits which must be deciphered during a relatively brief visit with the patient to determine patterns and establish or modify a treatment plan.[5]
Swift urges RDs to be informed and stay up-to-date as complementary and alternative medicine data evolves. Use a “whole systems, whole person” approach to health and healing. The Kripalu Center for Yoga and Health is a good place to start. “They have an outstanding program on diabetes care that’s multidisciplinary and integrative,” Swift says. You also can receive continuing education credits for attending.
Katie Wells, CTNC, MCHC, Founder and CEO of Wellness Mama, has a background in research, journalism, and nutrition. As a mom of six, she turned to research and took health into her own hands to find answers to her health problems. WellnessMama.com is the culmination of her thousands of hours of research and all posts are medically reviewed and verified by the Wellness Mama research team. Katie is also the author of the bestselling books The Wellness Mama Cookbook and The Wellness Mama 5-Step Lifestyle Detox.
And when I talk about reducing certain carbohydrates, I mainly mean reducing your intake of  refined carbohydrates such as pasta, rice and bread. Non starchy vegetables (such as broccoli, cabbage and cauliflower) are fine and can be eaten in abundance. Many fruits are packed with carbohydrates, so if you’re trying to reduce your carb intake, try and limit your intake to low-carb fruit, such as rhubarb, watermelon, berries, peaches and blackberries.
The earliest predictor of the development of type 2 diabetes is low insulin sensitivity in skeletal muscle, but it is important to recognize that this is not a distinct abnormality but rather part of the wide range expressed in the population. Those people in whom diabetes will develop simply have insulin sensitivity, mainly in the lowest population quartile (29). In prediabetic individuals, raised plasma insulin levels compensate and allow normal plasma glucose control. However, because the process of de novo lipogenesis is stimulated by higher insulin levels (38), the scene is set for hepatic fat accumulation. Excess fat deposition in the liver is present before the onset of classical type 2 diabetes (43,74–76), and in established type 2 diabetes, liver fat is supranormal (20). When ultrasound rather than magnetic resonance imaging is used, only more-severe degrees of steatosis are detected, and the prevalence of fatty liver is underestimated, with estimates of 70% of people with type 2 diabetes as having a fatty liver (76). Nonetheless, the prognostic power of merely the presence of a fatty liver is impressive of predicting the onset of type 2 diabetes. A large study of individuals with normal glucose tolerance at baseline showed a very low 8-year incidence of type 2 diabetes if fatty liver had been excluded at baseline, whereas if present, the hazard ratio for diabetes was 5.5 (range 3.6–8.5) (74). In support of this finding, a temporal progression from weight gain to raised liver enzyme levels and onward to hypertriglyceridemia and then glucose intolerance has been demonstrated (77).
This article is great, it combines all of the info I have found, not only putting it into a well written article but adds info I had not found yet. I have struggled with type 2 and losing weight, starting an aggressive weight cardio plan in 2016 with an A1C level of 9.7%. Even after three months of an hour or more of weight lifting and 30-50 mins of hard hilly terrain bike riding, my bets A1C was 7.7% with lowering my carb count to the recommended range. After an injury caused me to have to stop many of the exercises for a bit my A1C went up to the 9% range. July this year my A1C was 9.9% and my Dr was talking about insulin shots, which I hate needles. One last ditch effort to find a solution and avoid the shots, I found an article about the benefits of intermittent fasting. I did a lot of research on the matter before creating my own version of a Keto diet, and went on a strict diet of 5-8 servings of green leafy vegetables a day, around 45g of carbs a day, 3oz of lean or healthy fat protein a meal and fasting for 18 hours between Dinner till lunch the next day for two and a half months. My A1C was 6.5, I lost 20lbs, and have tons of energy and no cravings. I have altered my diet to fit my new exercise plan, still 5-8 servings of vegetables a day, but have added occasional breakfasts of two eggs and 1/2 cup salsa, no more than 100g of carbs a day except my once a week cheat day that might go slightly higher if my blood sugar is in a good range, 6oz lean healthy fat protein, and a hard boiled egg in between meals.
An insulin pump is composed of a reservoir similar to that of an insulin cartridge, a battery-operated pump, and a computer chip that allows the user to control the exact amount of insulin being delivered. The pump is attached to a thin plastic tube (an infusion set) that has a cannula (like a needle but soft) at the end through which insulin passes. This cannula is inserted under the skin, usually on the abdomen.. The pump continuously delivers insulin, 24 hours a day. The amount of insulin is programmed and is administered at a constant rate (basal rate). Often, the amount of insulin needed over the course of 24 hours varies, depending on factors like exercise, activity level, and sleep. The insulin pump allows the user to program many different basal rates to allow for variations in lifestyle. The user can also program the pump to deliver additional insulin during meals, covering the excess demands for insulin caused by eating carbohydrates.
×