With that in mind, let’s take a look at some of the best herbs that lower blood sugar, along with a few spices thrown in, to give you a more comprehensive list. Please note that while we normally do not use animal studies to support any dietary supplement, several herbs like garlic and ginger are considered ‘food’ and so, are used traditionally by cultures across the world in their daily diet for their additional medical benefits. So human lab research studies on these are not always available. You can check all available studies under ‘References’ at the end of the article.

Glycated hemoglobin (A1C) test. This blood test indicates your average blood sugar level for the past two to three months. It measures the percentage of blood sugar attached to hemoglobin, the oxygen-carrying protein in red blood cells. The higher your blood sugar levels, the more hemoglobin you'll have with sugar attached. An A1C level of 6.5 percent or higher on two separate tests indicates you have diabetes. A result between 5.7 and 6.4 percent is considered prediabetes, which indicates a high risk of developing diabetes. Normal levels are below 5.7 percent.
Another study published in the same journal, however, examined the effect of chromium on glycemic control in insulin-dependent people with type 2 diabetes. People were given either 500 or 1,000 mcg a day of chromium or a placebo for six months. There was no significant difference in glycosylated hemoglobin, body mass index, blood pressure, or insulin requirements across the three groups.
The study wasn’t a controlled experiment designed to prove whether or how treatment intensification might directly improve blood sugar. Researchers also lacked data to explain why doctors or patients might have decided against a change in therapy. And the study didn’t show whether failure to switch treatment regimens resulted in diabetes complications.
Genetic predisposition to liver problems or certain autoimmune diseases often correlate to higher rates of diabetes. This is likely because proper insulin response is handled by the pancreas and liver, so problems here could affect the body’s normal response. Studies have linked certain autoimmune disease and leaky gut syndrome with higher instances of diabetes also, so this correlation is logical as well.
I’m glad you talk about personal tolerance. My doc wants me to go on a ketogenic diet, but even when on the Autoimmune Paleo Diet, my adrenals would go a bit nuts. I can’t go any longer than 6 hours without food overnight…my adrenals start pumping out the adrenalin after about 3 to 6 hours of sleep (no matter what I eat or don’t eat before bed) and I wake up with anxiety. Adding a bit of carbs (3/4 cup at dinner and 1/2 cup at lunch) has allowed me to go a full 6 hours (would love 7 or 8) but it still feels terrible when I wake up.
Obesity is a disease, not something created by lack of character. It is a hormonal disease. There are many hormones involved, and one of the main ones is a hormone called insulin. The vast majority of obese individuals are resistant to insulin and that causes a lot of trouble. So, what does being insulin-resistant mean? Insulin resistance is essentially ‘pre-pre-type 2 diabetes.’ Insulin’s job is to drive glucose or blood sugar into cells where it can be used. In a nutshell, when someone has insulin resistance, they are having trouble getting glucose where it needs to go, into the cells. It can’t all hang out in the blood after we eat, or we would all have a diabetic crisis after every meal. When there is resistance to insulin, our bodies will just make more of it. The insulin levels rise and rise and for a while, years usually, this will keep up and blood sugar will stay normal. However, eventually it can’t keep up, and even elevate insulin levels are not enough to keep blood sugar normal, and blood sugar rises. And that is diabetes.
Melissa Conrad Stöppler, MD, is a U.S. board-certified Anatomic Pathologist with subspecialty training in the fields of Experimental and Molecular Pathology. Dr. Stöppler's educational background includes a BA with Highest Distinction from the University of Virginia and an MD from the University of North Carolina. She completed residency training in Anatomic Pathology at Georgetown University followed by subspecialty fellowship training in molecular diagnostics and experimental pathology.
×