Chronic exposure of β-cells to triacylglycerol or fatty acids either in vitro or in vivo decreases β-cell capacity to respond to an acute increase in glucose levels (57,58). This concept is far from new (59,60), but the observations of what happens during reversal of diabetes provide a new perspective. β-Cells avidly import fatty acids through the CD36 transporter (24,61) and respond to increased fatty acid supply by storing the excess as triacylglycerol (62). The cellular process of insulin secretion in response to an increase in glucose supply depends on ATP generation by glucose oxidation. However, in the context of an oversupply of fatty acids, such chronic nutrient surfeit prevents further increases in ATP production. Increased fatty acid availability inhibits both pyruvate cycling, which is normally increased during an acute increase in glucose availability, and pyruvate dehydrogenase activity, the major rate-limiting enzyme of glucose oxidation (63). Fatty acids have been shown to inhibit β-cell proliferation in vitro by induction of the cell cycle inhibitors p16 and p18, and this effect is magnified by increased glucose concentration (64). This antiproliferative effect is specifically prevented by small interfering RNA knockdown of the inhibitors. In the Zucker diabetic fatty rat, a genetic model of spontaneous type 2 diabetes, the onset of hyperglycemia is preceded by a rapid increase in pancreatic fat (58). It is particularly noteworthy that the onset of diabetes in this genetic model is completely preventable by restriction of food intake (65), illustrating the interaction between genetic susceptibility and environmental factors.

Recently, a small clinical trial in England studied the effects of a strict liquid diet on 30 people who had lived with Type 2 diabetes for up to 23 years. Nearly half of those studied had a remission that lasted six months after the diet was over. While the study was small, the finding offers hope to millions who have been told they must live with the intractable disease.
To this end, treatment programs such as the Cognitive Behavioural Therapy - Adherence and Depression program (CBT-AD)[64] have been developed to target the psychological mechanisms underpinning adherence. By working on increasing motivation and challenging maladaptive illness perceptions, programs such as CBT-AD aim to enhance self-efficacy and improve diabetes-related distress and one's overall quality of life.[71]
As the fats decreased inside the liver and the pancreas, some individuals also experienced improved functioning of their pancreatic beta cells, which store and release insulin, a hormone that helps control blood sugar levels. The likelihood of regaining normal glucose control depends on the ability of the beta cells to recover, the study authors say.
” 200 consecutive pts, aged 51-86, M:F ratio 3/2, with known vascular risk factors of HTN, DM, Hypercholesterolemia, hx of MI, Stent, CABG, were enrolled in a dietary program, which emphasizes large amts of leafy green vegetables, olive oil, radical reduction of grain, legumes, nightshades, and fruits; and generous amts of grassfed animal proteins, emphasizing Shellfish and avoiding commercial poultry (Diet Evolution). All pts were instructed to take 2-4,000 mg of high DHA fish oil, 200mg of Grape Seed Extract, and 50 mg of Pycnogenol per day. All pts had Endothelial Reactivity (ER) using PAT before and after a 5-minute arm occlusion using the EndoPAT 2000 (Itamar, Israel) at baseline and at 6 months.
Momordica Charantia goes under a variety of names and is native to some areas of Asia, India, Africa and South America. Marketed as charantia, it is also known as karela or karolla and bitter melon. The herb may be prepared in a variety of different ways, and may be able to help diabetics with insulin secretion, glucose oxidation and other processes.
This content is provided as a service of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), part of the National Institutes of Health. The NIDDK translates and disseminates research findings through its clearinghouses and education programs to increase knowledge and understanding about health and disease among patients, health professionals, and the public. Content produced by the NIDDK is carefully reviewed by NIDDK scientists and other experts.

Regular blood testing, especially in type 1 diabetics, is helpful to keep adequate control of glucose levels and to reduce the chance of long term side effects of the disease. There are many (at least 20+) different types of blood monitoring devices available on the market today; not every meter suits all patients and it is a specific matter of choice for the patient, in consultation with a physician or other experienced professional, to find a meter that they personally find comfortable to use. The principle of the devices is virtually the same: a small blood sample is collected and measured. In one type of meter, the electrochemical, a small blood sample is produced by the patient using a lancet (a sterile pointed needle). The blood droplet is usually collected at the bottom of a test strip, while the other end is inserted in the glucose meter. This test strip contains various chemicals so that when the blood is applied, a small electrical charge is created between two contacts. This charge will vary depending on the glucose levels within the blood. In older glucose meters, the drop of blood is placed on top of a strip. A chemical reaction occurs and the strip changes color. The meter then measures the color of the strip optically.

Given the consequences of diabetes, self-management is something I want to encourage, not discourage. Without a commitment from the patient to take an active role in managing their diabetes, any treatment plan is doomed to fail. So is self-treatment with supplements a wise idea?  There’s an array available, and patients regularly ask about the latest treatment “Big Pharma doesn’t want you to know about”. That treatment used to be chromium. Ginseng was popular for a time, too. Fenugreek and bitter melon are used as well. The treatment that seems most popular now is cinnamon. Like any other herbal remedy, most sources will tell you that it’s been used for “thousands of years” as a medicinal herb. As a treatment for diabetes, I have my doubts. While reports of diabetes go back to 1552 BCE, the ability to effectively measure any diabetes treatment only goes back a few decades. Interest in cinnamon as a treatment seems to have started with in vitro tests but gained some plausibility in 2003, when a study from Alam Khan suggested several grams of cassia cinnamon per day could lower fasting blood glucose. Khan randomized Type 2 diabetes to 1g, 3g, or 6g of cinnamon for 40 days. All three groups improved their fasting blood glucose, and blood lipid levels, but there was no effect on A1C.

Healthy fats: Medium-chained fatty acids found in coconut and red palm oil can help balance blood sugar levels, and they serve as the preferred fuel source for your body rather than sugar. Using coconut milk, ghee and grass-fed butter can also help balance out your blood sugar levels, so include these foods into your meals and smoothies. Some research actually suggests that a high-fat, low carb diet known as the keto diet may be a novel approach to reverse diabetes naturally, although you don’t technically have to go into ketosis to achieve the benefits of healthy fats in treating diabetes. (12)
The researchers followed the participants after they had completed an eight-week low-calorie-milkshake diet and returned to normal eating. Six months later, those who had gone into remission immediately after the diet were still diabetes-free. Though most of those who reversed the disease had had it for less than four years, some had been diabetic for more than eight years.

Relying on their own perceptions of symptoms of hyperglycemia or hypoglycemia is usually unsatisfactory as mild to moderate hyperglycemia causes no obvious symptoms in nearly all patients. Other considerations include the fact that, while food takes several hours to be digested and absorbed, insulin administration can have glucose lowering effects for as little as 2 hours or 24 hours or more (depending on the nature of the insulin preparation used and individual patient reaction). In addition, the onset and duration of the effects of oral hypoglycemic agents vary from type to type and from patient to patient.
Depending on the severity of diabetes, an individual can keep control on his/her disease using diet alone, diet & oral hypoglycemic drugs, and diet & insulin. While a mild diabetic can practice disease control with diet alone, a severe diabetic might need to practice diet control along with insulin administration. Whatever the method of controlling diabetes, routine and reliability should be strictly pursued. A person suffering from diabetes should have limited amount of carbohydrates and fats along with moderate amount of protein in the diet. High-fiber diet like vegetables, whole wheat products, oats, whole legumes prove to be more beneficial. Let us have a look at what all should be had and what all should be avoided.
Yet Gabbay says preliminary human studies with positive results, like this week’s in BMJ Case Reports, suggest the diet is worthy of further study in a larger population over a longer period of time. For now, he cautions people with diabetes, especially those on insulin and sulfonylureas to lower their blood sugar, against trying intermittent fasting before speaking with their healthcare provider.
Type 1 diabetes is commonly called “juvenile diabetes” because it tends to develop at a younger age, typically before a person turns 20 years old. Type 1 diabetes is an autoimmune disease where the immune system attacks the insulin-producing beta cells in the pancreas. The damage to the pancreatic cells leads to a reduced ability or complete inability to create insulin. Some of the common causes that trigger this autoimmune response may include a virus, genetically modified organisms, heavy metals, vaccines, or foods like wheat, cow’s milk and soy. (4)
Studies funded by the National Institutes of Health (NIH) have demonstrated that face-to-face training programs designed to help individuals with type 1 diabetes better anticipate, detect, and prevent extreme BG can reduce the occurrence of future hypoglycemia-related driving mishaps.[51][52][53] An internet-version of this training has also been shown to have significant beneficial results.[54] Additional NIH funded research to develop internet interventions specifically to help improve driving safety in drivers with type 1 diabetes is currently underway.[55]
Curcumin is a bright yellow chemical produced by the spice turmeric, among other plants. Curcumin seems to have multiple benefits for diabetes symptoms. It has been shown to be a marked inhibitor of reactive oxygen species that promote oxidation damage in cells. Curcumin lowers inflammatory chemicals like tumor necrosis factor-alpha, and that’s good because TNF-a causes insulin resistance and irritates fatty livers. Curcumin can reduce another pro-inflammatory chemical called NF-KB. The above-mentioned actions provide a benefit in diabetes protection and reduce the risk of developing diabetes symptoms and complications. Curcumin has also been shown to enhance pancreatic beta cell functioning and reduce fatty liver deposition. It reduces high blood sugar, A1C, and insulin resistance. It was also shown to reduce the onset of Alzheimer’s disease, and that is a higher risk in diabetic patients than in nondiabetic patients. A good dose is 200 to 3,000 mg a day.
The new research ties in with recent thinking among experts about what happens when type 2 diabetes develops, says Domenico Accili, MD, chief of endocrinology at Columbia University Vagelos College of Physicians and Surgeons. "We have been talking for some time, that in diabetes, primarily type 2, the insulin-producing [beta] cell is not dead but simply inactive," he says. "If you put patients with diabetes on a diet, you can do marvels with their beta cells."
About 90 percent of people with type 2 diabetes are obese or overweight, according to the Obesity Society. Weight loss is a known treatment for type 2, which affects the majority of the 30.3 million people with diabetes, as it helps people with the disease reduce insulin resistance and absorb blood glucose more effectively. According to the Centers for Disease Control and Prevention (CDC), being overweight makes it harder to control diabetes and is a risk factor for diabetes-related health complications.
Eating a balanced diet is vital for people who have diabetes, so work with your doctor or dietitian to set up a menu plan. If you have type 1 diabetes, the timing of your insulin dosage is determined by activity and diet. When you eat and how much you eat are just as important as what you eat. Usually, doctors recommend three small meals and three to four snacks every day to maintain the proper balance between sugar and insulin in the blood.

People with T1D work with an endocrinologist to determine proper insulin-to-carb ratio. This ratio is the amount of insulin needed to balance the intake of a certain amount of carbohydrates (typically measured in grams). Measuring the amount of carbohydrates and factoring the insulin to carb (I:C) ratio helps maintain stable blood-sugar levels after eating.
Dr. Sarah Hallberg is a Medical Director at Virta Health. She also created the Medically Supervised Weight Loss Program at Indiana University Health Arnett and serves as its Medical Director. She is an adjunct Clinical Professor of Medicine at Indiana University School of Medicine. Dr. Hallberg is an expert in diabetes care and is board certified in Internal Medicine, Obesity Medicine, and Clinical Lipidology and also a Registered Clinical Exercise Physiologist from the ACSM.
Implementing integrative and functional medical nutrition therapy, I helped the patient understand that she could reverse the trajectory she was on by making lifestyle changes—and that’s what she did. We engaged in shared decision making in our ongoing nutrition consultations. Over the course of one year, her physiology and health status changed for the better. Her A1c dropped from 7.2% to 5.6%, and she no longer required medications. She continues to adhere to her new lifestyle program and is confident she’ll remain free of a diabetes diagnosis.

Alternative medicine for diabetes is big business, because the public health burden of diabetes is massive, and growing. In 1985, the worldwide prevalence was 30 million people. In 2000, it was 150 million. By 2030, it could be 250 million. Why are more people being diagnosed with diabetes? Obesity, sedentary lifestyles, and an aging population. At its core, diabetes is a disease of sugar (glucose) management. Insulin, secreted by the pancreas, allows cells to use glucose. When the pancreas doesn’t produce insulin,  it’s called Type 1 diabetes. This is an autoimmune disease that strikes early in life, and was a death sentence until insulin was discovered.  When the pancreas can produce insulin, but the amount is insufficient, or when there’s a problem with the uptake of insulin into cells, it’s termed type 2 diabetes.  90% of all diabetes is type 2. Typically a disease of older adults, type 2 diabetes can potentially be treated without drugs of any kind, but success rates are low and medication is eventually advisable. There’s also gestational diabetes, a disease of pregnancy, and prediabetes, where blood sugars are elevated, and diabetes is an expected future diagnosis.


“Diabetes type 1 is very different from your standard disease. Insulin requirements vary greatly from one day to another and there is no way patients can know what they need,” Roman Hovorka, Professor at the University of Cambridge, explained to me during an interview. His research group is working on the development of an algorithm that can accurately predict insulin requirements for a specific patient at any moment.
Chronic exposure of β-cells to triacylglycerol or fatty acids either in vitro or in vivo decreases β-cell capacity to respond to an acute increase in glucose levels (57,58). This concept is far from new (59,60), but the observations of what happens during reversal of diabetes provide a new perspective. β-Cells avidly import fatty acids through the CD36 transporter (24,61) and respond to increased fatty acid supply by storing the excess as triacylglycerol (62). The cellular process of insulin secretion in response to an increase in glucose supply depends on ATP generation by glucose oxidation. However, in the context of an oversupply of fatty acids, such chronic nutrient surfeit prevents further increases in ATP production. Increased fatty acid availability inhibits both pyruvate cycling, which is normally increased during an acute increase in glucose availability, and pyruvate dehydrogenase activity, the major rate-limiting enzyme of glucose oxidation (63). Fatty acids have been shown to inhibit β-cell proliferation in vitro by induction of the cell cycle inhibitors p16 and p18, and this effect is magnified by increased glucose concentration (64). This antiproliferative effect is specifically prevented by small interfering RNA knockdown of the inhibitors. In the Zucker diabetic fatty rat, a genetic model of spontaneous type 2 diabetes, the onset of hyperglycemia is preceded by a rapid increase in pancreatic fat (58). It is particularly noteworthy that the onset of diabetes in this genetic model is completely preventable by restriction of food intake (65), illustrating the interaction between genetic susceptibility and environmental factors.

A healthy balance of carbohydrates, proteins, and fats in your diet will help keep your blood glucose on target. How much of each will depend on many factors, including your weight and your personal preferences. Watching your carbohydrates -- knowing how much you need and how many you are eating -- is key to blood sugar control. If you are overweight, either a low-carbohydrate, low-fat/low calorie, or Mediterranean diet may help you get your weight to goal. No more than 7% of your diet should come from saturated fat, and you should try to avoid trans fats altogether.


First, the health of your gut is critical to your overall health. This is because your gut is home of trillions of microbes called the gut microbiome. These microbes work in symbiotic and antagonistic relationships within your body. A 2017 study using multiple therapies to manipulate the gut microbiome composition, found they could impact the individual’s health more rapidly. This study also found manipulating the gut microbiome as an effective way to avoid insulin resistance and therefore prevent diabetes.
During this 8-week study, β-cell function was tested by a gold standard method that used a stepped glucose infusion with subsequent arginine bolus (21). In type 2 diabetes, the glucose-induced initial rapid peak of insulin secretion (the first phase insulin response) typically is absent. This was confirmed at baseline in the study, but the first phase response increased gradually over 8 weeks of a very-low-calorie diet to become indistinguishable from that of age- and weight-matched nondiabetic control subjects. The maximum insulin response, as elicited by arginine bolus during hyperglycemia, also normalized. Pancreas fat content decreased gradually during the study period to become the same as that in the control group, a time course matching that of the increase in both first phase and total insulin secretion (Fig. 3). Fat content in the islets was not directly measured, although it is known that islets take up fat avidly (24) and that islet fat content closely reflects total pancreatic fat content in animal models (25). Although a cause-and-effect relationship between raised intraorgan fat levels and metabolic effect has not yet been proven, the time course data following the dietary intervention study are highly suggestive of a causal link (21).
Fig leaves are best known for treating diabetes, but there are many other uses for the fig leaves. There are many homemade remedies from treating diabetes to treating bronchitis, genital warts, liver cirrhosis, high blood pressure, skin problems and ulcers. Fig leaves are not used as much as they should be. Most of the remedies for the fig leaves use the sap or the milk of the sacred tree. Fig tinctures or poultices should be used immediately and fresh batches made daily.

Hyperglycemic hyperosmolar nonketotic syndrome (HHNS). Signs and symptoms of this life-threatening condition include a blood sugar reading higher than 600 mg/dL (33.3 mmol/L), dry mouth, extreme thirst, fever greater than 101 F (38 C), drowsiness, confusion, vision loss, hallucinations and dark urine. Your blood sugar monitor may not be able to give you an exact reading at such high levels and may instead just read "high."

First, the health of your gut is critical to your overall health. This is because your gut is home of trillions of microbes called the gut microbiome. These microbes work in symbiotic and antagonistic relationships within your body. A 2017 study using multiple therapies to manipulate the gut microbiome composition, found they could impact the individual’s health more rapidly. This study also found manipulating the gut microbiome as an effective way to avoid insulin resistance and therefore prevent diabetes.
Low blood sugar, or hypoglycemia, is a syndrome in which a person's blood sugar is dangerously low. People with type 1 and type 2 diabetes are at risk for this condition. There are other diseases that can cause a person's blood sugar levels to go too low, for example, pancreatitis, Cushing's syndrome, and pancreatic cancer. Symptoms and signs that your blood sugar levels are too low include:
×