Data from the Swedish randomized study of gastric banding showed that a loss of 20% body weight was associated with long-term remission in 73% of a bariatric surgery group, with weight change itself being the principal determinant of glucose control (13). Dietary weight loss of 15 kg allowed for reversal of diabetes in a small group of individuals recently receiving a diagnosis (21). In individuals strongly motivated to regain normal health, substantial weight loss is entirely possible by decreasing food consumption (88). This information should be made available to all people with type 2 diabetes, even though with present methods of changing eating habits, it is unlikely that weight loss can be achieved in those not strongly motivated to escape from diabetes. Some genetic predictors, especially the Ala12 allele at PPARG, of successful long-term weight loss have been identified (89), and use of such markers could guide future therapy. It must be noted that involuntary food shortage, such as a result of war, results in a sharp fall in type 2 diabetes prevalence (90,91).
Stem cell research has also been suggested as a potential avenue for a cure since it may permit regrowth of Islet cells which are genetically part of the treated individual, thus perhaps eliminating the need for immuno-suppressants.[48] This new method autologous nonmyeloablative hematopoietic stem cell transplantation was developed by a research team composed by Brazilian and American scientists (Dr. Julio Voltarelli, Dr. Carlos Eduardo Couri, Dr Richard Burt, and colleagues) and it was the first study to use stem cell therapy in human diabetes mellitus This was initially tested in mice and in 2007 there was the first publication of stem cell therapy to treat this form of diabetes.[73] Until 2009, there was 23 patients included and followed for a mean period of 29.8 months (ranging from 7 to 58 months). In the trial, severe immunosuppression with high doses of cyclophosphamide and anti-thymocyte globulin is used with the aim of "turning off" the immunologic system", and then autologous hematopoietic stem cells are reinfused to regenerate a new one. In summary it is a kind of "immunologic reset" that blocks the autoimmune attack against residual pancreatic insulin-producing cells. Until December 2009, 12 patients remained continuously insulin-free for periods ranging from 14 to 52 months and 8 patients became transiently insulin-free for periods ranging from 6 to 47 months. Of these last 8 patients, 2 became insulin-free again after the use of sitagliptin, a DPP-4 inhibitor approved only to treat type 2 diabetic patients and this is also the first study to document the use and complete insulin-independendce in humans with type 1 diabetes with this medication. In parallel with insulin suspension, indirect measures of endogenous insulin secretion revealed that it significantly increased in the whole group of patients, regardless the need of daily exogenous insulin use.[74]
Taking 200 micrograms of chromium picolinate three times daily with meals can help improve insulin sensitivity. A review published in Diabetes Technology and Therapeutics evaluated 13 studies that reported significant improvement in glycemic control and substantial reductions in hyperglycemia and hyperinsulinemia after patients used chromium picolinate supplementation. Other positive outcomes from supplementing with chromium picolinate included reduced cholesterol and triglyceride levels and reduced requirements for hypoglycemic medication. (14)
Melissa Conrad Stöppler, MD, is a U.S. board-certified Anatomic Pathologist with subspecialty training in the fields of Experimental and Molecular Pathology. Dr. Stöppler's educational background includes a BA with Highest Distinction from the University of Virginia and an MD from the University of North Carolina. She completed residency training in Anatomic Pathology at Georgetown University followed by subspecialty fellowship training in molecular diagnostics and experimental pathology.