Some studies suggest that low magnesium levels may worsen blood glucose control in type 2 diabetes. There is also some evidence that magnesium supplementation may help with insulin resistance. For example, a study examined the effect of magnesium or placebo in 63 people with type 2 diabetes and low magnesium levels who were taking the medication glibenclamide. After 16 weeks, people who took magnesium had improved insulin sensitivity and lower fasting glucose levels.
Type 1 diabetes is commonly called “juvenile diabetes” because it tends to develop at a younger age, typically before a person turns 20 years old. Type 1 diabetes is an autoimmune disease where the immune system attacks the insulin-producing beta cells in the pancreas. The damage to the pancreatic cells leads to a reduced ability or complete inability to create insulin. Some of the common causes that trigger this autoimmune response may include a virus, genetically modified organisms, heavy metals, vaccines, or foods like wheat, cow’s milk and soy. (4)
Primary Care Provider: Your primary care provider is the provider you see for general checkups or when you get sick. Your primary care provider may also be the one who refers you to specialists or other team members. Other health care providers who provide primary care include nurse practitioners and physician assistants, who typically work with a physician.
Reversal of type 2 diabetes to normal metabolic control by either bariatric surgery or hypocaloric diet allows for the time sequence of underlying pathophysiologic mechanisms to be observed. In reverse order, the same mechanisms are likely to determine the events leading to the onset of hyperglycemia and permit insight into the etiology of type 2 diabetes. Within 7 days of instituting a substantial negative calorie balance by either dietary intervention or bariatric surgery, fasting plasma glucose levels can normalize. This rapid change relates to a substantial fall in liver fat content and return of normal hepatic insulin sensitivity. Over 8 weeks, first phase and maximal rates of insulin secretion steadily return to normal, and this change is in step with steadily decreasing pancreatic fat content. The difference in time course of these two processes is striking. Recent information on the intracellular effects of excess lipid intermediaries explains the likely biochemical basis, which simplifies both the basic understanding of the condition and the concepts used to determine appropriate management. Recent large, long-duration population studies on time course of plasma glucose and insulin secretion before the diagnosis of diabetes are consistent with this new understanding. Type 2 diabetes has long been regarded as inevitably progressive, requiring increasing numbers of oral hypoglycemic agents and eventually insulin, but it is now certain that the disease process can be halted with restoration of normal carbohydrate and fat metabolism. Type 2 diabetes can be understood as a potentially reversible metabolic state precipitated by the single cause of chronic excess intraorgan fat.
Melissa Conrad Stöppler, MD, is a U.S. board-certified Anatomic Pathologist with subspecialty training in the fields of Experimental and Molecular Pathology. Dr. Stöppler's educational background includes a BA with Highest Distinction from the University of Virginia and an MD from the University of North Carolina. She completed residency training in Anatomic Pathology at Georgetown University followed by subspecialty fellowship training in molecular diagnostics and experimental pathology.
×