“Basic principles of good health like eating right, exercising regularly, and maintaining a healthy weight can be as effective as medicine in the management of type 2 diabetes for most people,” says Sue McLaughlin, RD, CDE, lead medical nutrition therapist at Nebraska Medicine in Omaha. That's backed up by the Look AHEAD study, a large clinical trial funded by the National Institutes of Health and the Centers for Disease Control and Prevention (CDC). The researchers found that over a four-year period, changes like eating a healthier diet and getting more exercise led to weight loss and improved diabetes control in 5,000 overweight or obese participants with type 2 diabetes.
Even if you don’t have any underlying glucose issues, testing your blood sugar occasionally will help you pin point which carbohydrates you tolerate well and which you don’t. It can help you have a better understanding of your body’s reaction to foods and take control of your health. It is also an accurate alternative to the pregnancy test for gestational diabetes, so talk to your doctor if you’d prefer to test yourself, though you may have to explain your reasons!
But is John “free of diabetes”? This is where the lines become blurred. Medically speaking, the term “cure” is usually associated with acute disease—a temporary medical condition, such as bacterial pneumonia, that can be cured with antibiotics. For diabetes, which is a chronic disease, it may be more accurate to use the term “remission” rather than cure. Particularly when considering the pathology associated with diabetes and the individual’s genetic predisposition, relapse is always possible. In a consensus statement issued by the ADA, the term remission is defined based on the following definitions:2
Studies conducted in the United States[43] and Europe[44] showed that drivers with type 1 diabetes had twice as many collisions as their non-diabetic spouses, demonstrating the increased risk of driving collisions in the type 1 diabetes population. Diabetes can compromise driving safety in several ways. First, long-term complications of diabetes can interfere with the safe operation of a vehicle. For example, diabetic retinopathy (loss of peripheral vision or visual acuity), or peripheral neuropathy (loss of feeling in the feet) can impair a driver’s ability to read street signs, control the speed of the vehicle, apply appropriate pressure to the brakes, etc.

Imagine that you hide your kitchen garbage under the rug instead throwing it outside in the trash. You can’t see it, so you can pretend your house is clean. When there’s no more room underneath the rug, you throw the garbage into your bedroom, and bathroom, too. Anywhere where you don’t have to see it. Eventually, it begins to smell. Really, really bad.
Any form of carbohydrate is eventually broken down by the body into glucose, a simple form of sugar. While the body can use glucose for fuel, levels that exceed what  is needed are toxic to the body. In the long run, that whole wheat muffin, cup of millet, or bowl of oatmeal turns into the exact same thing as a cup of soda, a donut or a handful of candy.
"Perfect glycemic control" would mean that glucose levels were always normal (70–130 mg/dl, or 3.9–7.2 mmol/L) and indistinguishable from a person without diabetes. In reality, because of the imperfections of treatment measures, even "good glycemic control" describes blood glucose levels that average somewhat higher than normal much of the time. In addition, one survey of type 2 diabetics found that they rated the harm to their quality of life from intensive interventions to control their blood sugar to be just as severe as the harm resulting from intermediate levels of diabetic complications.[17]
Although a defect in mitochondrial function is associated with extremes of insulin resistance in skeletal muscle (30), this does not appear to be relevant to the etiology of type 2 diabetes. No defect is present in early type 2 diabetes but rather is directly related to ambient plasma glucose concentration (31). Observed rates of mitochondrial ATP production can be modified by increasing or decreasing plasma fatty acid concentration (32,33). Additionally, the onset of insulin stimulation of mitochondrial ATP synthesis is slow, gradually increasing over 2 h, and quite distinct from the acute onset of insulin’s metabolic effects (34). Although it remains possible that secondary mitochondrial effects of hyperglycemia and excess fatty acids exist, there is no evidence for a primary mitochondrial defect underlying type 2 diabetes.
Whole-body insulin resistance is the earliest predictor of type 2 diabetes onset, and this mainly reflects muscle insulin resistance (26). However, careful separation of the contributions of muscle and liver have shown that early improvement in control of fasting plasma glucose level is associated only with improvement in liver insulin sensitivity (20,21). It is clear that the resumption of normal or near-normal diurnal blood glucose control does not require improvement in muscle insulin sensitivity. Although this finding may at first appear surprising, it is supported by a wide range of earlier observations. Mice totally lacking in skeletal muscle insulin receptors do not develop diabetes (27). Humans who have the PPP1R3A genetic variant of muscle glycogen synthase cannot store glycogen in muscle after meals but are not necessarily hyperglycemic (28). Many normoglycemic individuals maintain normal blood glucose levels with a degree of muscle insulin resistance identical to those with type 2 diabetes (29).
Foods high in fiber: Research shows that 90 percent of the U.S. population doesn’t consume enough fiber on a daily basis. High-fiber foods help slow down glucose absorption, regulate your blood sugar levels and support detoxification. Aim to eat at least 30 grams of fiber per day, which can come from vegetables (like Brussels sprouts, peas and artichokes), avocados, berries, nuts and seeds, especially chia seeds and flaxseeds. (9)
The accepted view has been that the β-cell dysfunction of established diabetes progresses inexorably (79,82,83), whereas insulin resistance can be modified at least to some extent. However, it is now clear that the β-cell defect, not solely hepatic insulin resistance, may be reversible by weight loss at least early in the course of type 2 diabetes (21,84). The low insulin sensitivity of muscle tissue does not change materially either during the onset of diabetes or during subsequent reversal. Overall, the information on the inhibitory effects of excess fat on β-cell function and apoptosis permits a new understanding of the etiology and time course of type 2 diabetes.
People with T1D work with an endocrinologist to determine proper insulin-to-carb ratio. This ratio is the amount of insulin needed to balance the intake of a certain amount of carbohydrates (typically measured in grams). Measuring the amount of carbohydrates and factoring the insulin to carb (I:C) ratio helps maintain stable blood-sugar levels after eating.
The new research ties in with recent thinking among experts about what happens when type 2 diabetes develops, says Domenico Accili, MD, chief of endocrinology at Columbia University Vagelos College of Physicians and Surgeons. "We have been talking for some time, that in diabetes, primarily type 2, the insulin-producing [beta] cell is not dead but simply inactive," he says. "If you put patients with diabetes on a diet, you can do marvels with their beta cells."
"Perfect glycemic control" would mean that glucose levels were always normal (70–130 mg/dl, or 3.9–7.2 mmol/L) and indistinguishable from a person without diabetes. In reality, because of the imperfections of treatment measures, even "good glycemic control" describes blood glucose levels that average somewhat higher than normal much of the time. In addition, one survey of type 2 diabetics found that they rated the harm to their quality of life from intensive interventions to control their blood sugar to be just as severe as the harm resulting from intermediate levels of diabetic complications.[17]
These seeds, used in Indian cooking, have been found to lower blood sugar, increase insulin sensitivity, and reduce high cholesterol, according to several animal and human studies. The effect may be partly due to the seeds’ high fiber content. The seeds also contain an amino acid that appears to boost the release of insulin. In one of the largest studies on fenugreek, 60 people who took 25 grams daily showed significant improvements in blood sugar control and post-meal spikes.
Relying on their own perceptions of symptoms of hyperglycemia or hypoglycemia is usually unsatisfactory as mild to moderate hyperglycemia causes no obvious symptoms in nearly all patients. Other considerations include the fact that, while food takes several hours to be digested and absorbed, insulin administration can have glucose lowering effects for as little as 2 hours or 24 hours or more (depending on the nature of the insulin preparation used and individual patient reaction). In addition, the onset and duration of the effects of oral hypoglycemic agents vary from type to type and from patient to patient.
Given the consequences of diabetes, self-management is something I want to encourage, not discourage. Without a commitment from the patient to take an active role in managing their diabetes, any treatment plan is doomed to fail. So is self-treatment with supplements a wise idea?  There’s an array available, and patients regularly ask about the latest treatment “Big Pharma doesn’t want you to know about”. That treatment used to be chromium. Ginseng was popular for a time, too. Fenugreek and bitter melon are used as well. The treatment that seems most popular now is cinnamon. Like any other herbal remedy, most sources will tell you that it’s been used for “thousands of years” as a medicinal herb. As a treatment for diabetes, I have my doubts. While reports of diabetes go back to 1552 BCE, the ability to effectively measure any diabetes treatment only goes back a few decades. Interest in cinnamon as a treatment seems to have started with in vitro tests but gained some plausibility in 2003, when a study from Alam Khan suggested several grams of cassia cinnamon per day could lower fasting blood glucose. Khan randomized Type 2 diabetes to 1g, 3g, or 6g of cinnamon for 40 days. All three groups improved their fasting blood glucose, and blood lipid levels, but there was no effect on A1C.

A study published in 2014 by the Second University of Naples showed that a low-carbohydrate Mediterranean diet was able to achieve significant rates of remission in people with type 2 diabetes. After one year of following the diet, 15% of participants achieved remission and, after six years, 5% had achieved remission on the diet – a stunning achievement.


Alcohol: Alcohol can dangerously increase blood sugar and lead to liver toxicity. Research published in Annals of Internal Medicine found that there was a 43 percent increased incidence of diabetes associated with heavy consumption of alcohol, which is defined as three or more drinks per day. (8) Beer and sweet liquors are especially high in carbohydrates and should be avoided.
The main goal of diabetes management is, as far as possible, to restore carbohydrate metabolism to a normal state. To achieve this goal, individuals with an absolute deficiency of insulin require insulin replacement therapy, which is given through injections or an insulin pump. Insulin resistance, in contrast, can be corrected by dietary modifications and exercise. Other goals of diabetes management are to prevent or treat the many complications that can result from the disease itself and from its treatment.
Studies conducted in the United States[43] and Europe[44] showed that drivers with type 1 diabetes had twice as many collisions as their non-diabetic spouses, demonstrating the increased risk of driving collisions in the type 1 diabetes population. Diabetes can compromise driving safety in several ways. First, long-term complications of diabetes can interfere with the safe operation of a vehicle. For example, diabetic retinopathy (loss of peripheral vision or visual acuity), or peripheral neuropathy (loss of feeling in the feet) can impair a driver’s ability to read street signs, control the speed of the vehicle, apply appropriate pressure to the brakes, etc.
Although the relationship between magnesiumand diabetes has been studied for decades, we still don't fully understand it. Low magnesium may worsen blood sugar control in type 2 diabetes. Scientists say that it interrupts insulin secretion in the pancreas and builds insulin resistance in the body's tissues. And evidence suggests that a magnesium deficiency may contribute to some diabetes complications. People who get more magnesium in their diet (by eating whole grains, nuts, and green leafy vegetables) have a lower risk of type 2 diabetes.

Everybody and their brother is jumping on the Diabetes bandwagon. I remember when Dr. Neal Barnard and Dr. Gabriel Cousens were the only two advocating a vegan diet to reverse Type 2 Diabetes and nobody was listening. Now, it seems there is some Doctor who pops out of the woodwork who claims to have the “Real” cure. Bottom line a ketogenic diet is dangerous for diabetics. It has been proven through studies that high fat diets are detrimental for glucose control. Fasting is also hit and miss for glucose control. As each person’s body is different and responds differently, a keto diet may work at first, but over time blood sugar numbers will rise. I tried a keto diet for 8 weeks. First three weeks it worked great then my glucose numbers slowly started to rise and it started to get hard to control my numbers. Same with fasting. My body responds to eating smaller meals every two hours, 90% vegan and raw. I eat chicken and fish sparingly. It works for me. But, I have known many diabetics who ended up in a bad place on a keto diet. In the long run it is a big fail. There are no studies that support it, whereas there are numerous studies (even government funded studies) that support a vegan diet to reverse diabetes.
Levels greater than 13–15 mmol/L (230–270 mg/dL) are considered high, and should be monitored closely to ensure that they reduce rather than continue to remain high. The patient is advised to seek urgent medical attention as soon as possible if blood sugar levels continue to rise after 2–3 tests. High blood sugar levels are known as hyperglycemia, which is not as easy to detect as hypoglycemia and usually happens over a period of days rather than hours or minutes. If left untreated, this can result in diabetic coma and death.
Exenatide (Byetta) was the first drug of the GLP-1 agonist group. It originated from an interesting source, the saliva of the Gila monster. Scientists observed that this small lizard could go a long time without eating. They discovered a substance in its saliva that slowed stomach emptying, thus making the lizard feel fuller for a longer time. This substance resembled the hormone GLP-1.
×