If your carb consumption is on the high side (once you add sugar into the mix, you’re most certainly on the high side), it’s stored as fat and you end up with insulin resistance or non-alcoholic fatty liver disease.[14] The reason behind it is that carbs metabolize into glucose, and limiting carbs helps your body control blood sugar more efficiently.[15][16] It improves overall blood sugar profiles, insulin sensitivity, and hemoglobin A1c, which is a diabetes marker.[17] Going low-carb is especially effective if you’re in the early stages when you do not yet need to administer insulin.[18]
Consider a form of regular fasting (more to come in a later blog), such as intermittent fasting or time-restricted feeding (TRF). TRF means eating your calories during a specific window of the day, and choosing not to eat food for the rest. It’s a great way to reduce insulin levels in your body and help undo the effects of chronically elevated levels.

Yet Gabbay says preliminary human studies with positive results, like this week’s in BMJ Case Reports, suggest the diet is worthy of further study in a larger population over a longer period of time. For now, he cautions people with diabetes, especially those on insulin and sulfonylureas to lower their blood sugar, against trying intermittent fasting before speaking with their healthcare provider.
Magnesium deficiency is common in diabetic patients, as magnesium can be lost in the urine with hyperglycemia. A study in Diabetes Care reported that low magnesium status is common in Type 2 Diabetes Mellitus (T2DM) and showed that when low-magnesium Type 2 Diabetes Mellitus patients were given an oral dose of magnesium daily for sixteen weeks, the mineral reduced insulin resistance, fasting glucose, and A1C levels.
Replacing humans with computers could make patients better control their sugar levels and suffer less complications in the long term. The French company Cellnovo has already shown that just a partially automated system, where blood sugar levels can be monitored wirelessly but patients still select insulin amounts, can reduce the chances of reaching life-threatening low sugar levels up to 39%. The company is now working towards developing a fully automated artificial pancreas in collaboration with Imperial College, the Diabeloop consortium and the Horizon2020 program.

The diabetes market is expected to reach a massively big €86Bn by 2025 combining both type 1 (€32Bn) and type 2 (€54Bn) treatments, and we can expect all sort of revolutionary technologies to come forward and claim their market share. Researchers are already speculating about microchips that can diagnose diabetes type 1 before the symptoms appear or nanorobots traveling in the bloodstream while they measure glucose and deliver insulin.
Aside from the financial costs of diabetes, the more frightening findings are the complications and co-existing conditions. In 2014, 7.2 million hospital discharges were reported with diabetes as a listed diagnosis. Patients with diabetes were treated for major cardiovascular diseases, ischemic heart disease, stroke, lower-extremity amputation and diabetic ketoacidosis.
Melissa Conrad Stöppler, MD, is a U.S. board-certified Anatomic Pathologist with subspecialty training in the fields of Experimental and Molecular Pathology. Dr. Stöppler's educational background includes a BA with Highest Distinction from the University of Virginia and an MD from the University of North Carolina. She completed residency training in Anatomic Pathology at Georgetown University followed by subspecialty fellowship training in molecular diagnostics and experimental pathology.
×