As diabetes is a prime risk factor for cardiovascular disease, controlling other risk factors which may give rise to secondary conditions, as well as the diabetes itself, is one of the facets of diabetes management. Checking cholesterol, LDL, HDL and triglyceride levels may indicate hyperlipoproteinemia, which may warrant treatment with hypolipidemic drugs. Checking the blood pressure and keeping it within strict limits (using diet and antihypertensive treatment) protects against the retinal, renal and cardiovascular complications of diabetes. Regular follow-up by a podiatrist or other foot health specialists is encouraged to prevent the development of diabetic foot. Annual eye exams are suggested to monitor for progression of diabetic retinopathy.
Chinese medicine has been using cinnamon for medicinal purposes for hundreds of years. It has been the subject of numerous studies to determine its effect on blood glucose levels. A 2011 study has shown that cinnamon, in whole form or extract, helps lower fasting blood glucose levels. More studies are being done, but cinnamon is showing promise for helping to treat diabetes.

Metformin is a biguanide drug that increases the sensitivity of the body’s cells to insulin. It also decreases the amount of glucose produced by the liver.. In 1994, the FDA approved the use of the biguanide called metformin (Glucophage) for the treatment of type 2 diabetes. Today, this is still typically the first drug prescribed for type 2 diabetes.
Insulin therapy creates risk because of the inability to continuously know a person's blood glucose level and adjust insulin infusion appropriately. New advances in technology have overcome much of this problem. Small, portable insulin infusion pumps are available from several manufacturers. They allow a continuous infusion of small amounts of insulin to be delivered through the skin around the clock, plus the ability to give bolus doses when a person eats or has elevated blood glucose levels. This is very similar to how the pancreas works, but these pumps lack a continuous "feed-back" mechanism. Thus, the user is still at risk of giving too much or too little insulin unless blood glucose measurements are made.
Mr. Tutty, who weighed about 213 pounds before the trial, lost a little more than 30 pounds, the average weight loss in the trial. The people in the study most likely to respond to the treatment were in their early 50s on average and younger than the nonresponders, and they had had diabetes for fewer years. The responders were also healthier before the trial: They had been taking fewer medications than nonresponders, had lower fasting glucose and hemoglobin A1c before the trial, and had higher baseline serum insulin levels. Three of those who went into remission had lived with diabetes for more than eight years.
Sometimes pills for diabetes — even when combined with diet and exercise — aren't enough to keep blood sugar levels under control. Some people with type 2 diabetes also have to take insulin. The only way to get insulin into the body now is by injection with a needle or with an insulin pump. If someone tried to take insulin as a pill, the acids and digestive juices in the stomach and intestines would break down the medicine, and it wouldn't work.
Some studies show that certain plant foods may help your body fight inflammation and use insulin, a hormone that controls blood sugar. Cinnamon extracts can improve sugar metabolism, triggering insulin release, which also boosts cholesterol metabolism. Clove oil extracts (eugenol) have been found to help insulin work and to lower glucose, total cholesterol, LDL, and triglycerides. An unidentified compound in coffee (not caffeine) may enhance insulin sensitivity and lower the chances of developing type 2 diabetes.

An insulin pump is a small machine that gives you small, steady doses of insulin throughout the day. You wear one type of pump outside your body on a belt or in a pocket or pouch. The insulin pump connects to a small plastic tube and a very small needle. You insert the needle under your skin and it stays in place for several days. Insulin then pumps from the machine through the tube into your body 24 hours a day. You also can give yourself doses of insulin through the pump at mealtimes. Another type of pump has no tubes and attaches directly to your skin, such as a self-adhesive pod.
In a person with carbohydrate intolerance, type 2 diabetes or prediabetes, this system breaks down. The body loses its insulin sensitivity and more and more insulin is required to remove the excess blood sugar. As a result, blood sugar levels remain high and insulin levels are high as well, and these high insulin levels can make your body even less sensitive to insulin.

The American Diabetes Association publishes treatment guidelines for physicians based on all available scientific evidence. In the 2018 guidelines document, Standard of Medical Care in Diabetes, the ADA states that there is not sufficient evidence to support the use of any of the proposed alternative treatments for diabetes. These guidelines state that:
“People need to understand the continuum of diabetes,” she says. “If they’re on an upward trajectory of insulin resistance and a downward trajectory of insulin production weight loss, healthful eating and physical activity will slow down the insulin-loss trajectory and improve insulin sensitivity.” But, she says, “If they gain weight back, the diabetes comes back.”
A OGTT glucose of less than 140 ml/dl is considered normal, with 141-199 being pre-diabetic and levels above 200 mg/dL considered full-blown diabetes. From my research, I believe that  OGTT blood sugar levels above 140 mg/dL , especially regularly, can increase risk of vision problems, cancer, stroke and cardiovascular disease, even without an official diabetes diagnosis.

For Type 1 diabetics there will always be a need for insulin injections throughout their life. However, both Type 1 and Type 2 diabetics can see dramatic effects on their blood sugars through controlling their diet, and some Type 2 diabetics can fully control the disease by dietary modification. As diabetes can lead to many other complications it is critical to maintain blood sugars as close to normal as possible and diet is the leading factor in this level of control.


By checking your own blood sugar levels, you can track your body's changing needs for insulin and work with your doctor to figure out the best insulin dosage. People with diabetes check their blood sugar up to several times a day with an instrument called a glucometer. The glucometer measures glucose levels in a sample of your blood dabbed on a strip of treated paper. Also, there are now devices, called continuous glucose monitoring systems (CGMS), that can be attached to your body to measure your blood sugars every few minutes for up to a week at a time. But these machines check glucose levels from skin rather than blood, and they are less accurate than a traditional glucometer.
The twin cycle hypothesis of the etiology of type 2 diabetes. During long-term intake of more calories than are expended each day, any excess carbohydrate must undergo de novo lipogenesis, which particularly promotes fat accumulation in the liver. Because insulin stimulates de novo lipogenesis, individuals with a degree of insulin resistance (determined by family or lifestyle factors) will accumulate liver fat more readily than others because of higher plasma insulin levels. In turn, the increased liver fat will cause relative resistance to insulin suppression of hepatic glucose production. Over many years, a modest increase in fasting plasma glucose level will stimulate increased basal insulin secretion rates to maintain euglycemia. The consequent hyperinsulinemia will further increase the conversion of excess calories to liver fat. A cycle of hyperinsulinemia and blunted suppression of hepatic glucose production becomes established. Fatty liver leads to increased export of VLDL triacylglycerol (85), which will increase fat delivery to all tissues, including the islets. This process is further stimulated by elevated plasma glucose levels (85). Excess fatty acid availability in the pancreatic islet would be expected to impair the acute insulin secretion in response to ingested food, and at a certain level of fatty acid exposure, postprandial hyperglycemia will supervene. The hyperglycemia will further increase insulin secretion rates, with consequent enhancement of hepatic lipogenesis, spinning the liver cycle faster and driving the pancreas cycle. Eventually, the fatty acid and glucose inhibitory effects on the islets reach a trigger level that leads to a relatively sudden onset of clinical diabetes. Figure adapted with permission from Taylor (98).
Type 2 diabetes has long been known to progress despite glucose-lowering treatment, with 50% of individuals requiring insulin therapy within 10 years (1). This seemingly inexorable deterioration in control has been interpreted to mean that the condition is treatable but not curable. Clinical guidelines recognize this deterioration with algorithms of sequential addition of therapies. Insulin resistance and β-cell dysfunction are known to be the major pathophysiologic factors driving type 2 diabetes; however, these factors come into play with very different time courses. Insulin resistance in muscle is the earliest detectable abnormality of type 2 diabetes (2). In contrast, changes in insulin secretion determine both the onset of hyperglycemia and the progression toward insulin therapy (3,4). The etiology of each of these two major factors appears to be distinct. Insulin resistance may be caused by an insulin signaling defect (5), glucose transporter defect (6), or lipotoxicity (7), and β-cell dysfunction is postulated to be caused by amyloid deposition in the islets (8), oxidative stress (9), excess fatty acid (10), or lack of incretin effect (11). The demonstration of reversibility of type 2 diabetes offers the opportunity to evaluate the time sequence of pathophysiologic events during return to normal glucose metabolism and, hence, to unraveling the etiology.
This healthy lifestyle we refer to is being active 150 minutes or more each week and eating a meal plan low in fat and processed sugar with 3-5 vegetables and 2-3 fruits a day most days. It does not require low or no carbohydrate diet like Atkins or counting carbohydrates every meal. Most folks do better when they spread the carbohydrates out evenly over the day.
Katie Wells, CTNC, MCHC, Founder and CEO of Wellness Mama, has a background in research, journalism, and nutrition. As a mom of six, she turned to research and took health into her own hands to find answers to her health problems. WellnessMama.com is the culmination of her thousands of hours of research and all posts are medically reviewed and verified by the Wellness Mama research team. Katie is also the author of the bestselling books The Wellness Mama Cookbook and The Wellness Mama 5-Step Lifestyle Detox.
Sage can have metformin-like effects, according to a study published in the British Journal of Nutrition. So you may want to consider cooking with this herb often. It has been used on traditional medicine for centuries, as one of the important herbs to reduce blood sugar. A word of warning – taking high doses of sage along with diabetes medications might cause your blood sugar to go too low, a condition called hypoglycemia. Monitor your blood sugar closely.
Type 2 diabetes is the most common form of diabetes, and unlike type 1 diabetes, it usually occurs in people over the age of 40, especially those who are overweight. Type 2 diabetes is caused by insulin resistance, which means that the hormone insulin is being released, but a person doesn’t respond to it appropriately. Type 2 diabetes is a metabolic disorder that’s caused by high blood sugar. The body can keep up for a period of time by producing more insulin, but over time the insulin receptor sites burn out. Eventually, diabetes can affect nearly every system in the body, impacting your energy, digestion, weight, sleep, vision and more. (5)

Regular blood testing, especially in type 1 diabetics, is helpful to keep adequate control of glucose levels and to reduce the chance of long term side effects of the disease. There are many (at least 20+) different types of blood monitoring devices available on the market today; not every meter suits all patients and it is a specific matter of choice for the patient, in consultation with a physician or other experienced professional, to find a meter that they personally find comfortable to use. The principle of the devices is virtually the same: a small blood sample is collected and measured. In one type of meter, the electrochemical, a small blood sample is produced by the patient using a lancet (a sterile pointed needle). The blood droplet is usually collected at the bottom of a test strip, while the other end is inserted in the glucose meter. This test strip contains various chemicals so that when the blood is applied, a small electrical charge is created between two contacts. This charge will vary depending on the glucose levels within the blood. In older glucose meters, the drop of blood is placed on top of a strip. A chemical reaction occurs and the strip changes color. The meter then measures the color of the strip optically.
Physical activity is an important part of controlling diabetes and preventing complications such as heart disease and high blood pressure. "We know that exercise is a very effective way to help bring blood sugars under control for someone with type 2 diabetes," says Kenneth Snow, M.D., Acting Chief, Adult Diabetes, Joslin Clinic. Try for 30 minutes of moderate exercise, like brisk walking, on most days. Joslin's Why WAIT? and Easy Start exercise programs are great resources for developing a safe weight loss program.
HoneyColony and its materials are not intended to treat, diagnose, cure or prevent any disease. All material on HoneyColony is provided for educational purposes only. Always seek the advice of your physician or another qualified healthcare provider for any questions you have regarding a medical condition, and before undertaking any diet, exercise or other health related program.

Drugs of this class decrease the absorption of carbohydrates from the intestine. Before being absorbed into the bloodstream, enzymes in the small intestine must break down carbohydrates into smaller sugar particles, such as glucose. One of the enzymes involved in breaking down carbohydrates is called alpha-glucosidase. By inhibiting this enzyme, carbohydrates are not broken down as efficiently, and glucose absorption is delayed.
×