To prevent further diabetic complications as well as serious oral problems, diabetic persons must keep their blood sugar levels under control and have a proper oral hygiene. A study in the Journal of Periodontology found that poorly controlled type 2 diabetic patients are more likely to develop periodontal disease than well-controlled diabetics are.[58] At the same time, diabetic patients are recommended to have regular checkups with a dental care provider at least once in three to four months. Diabetics who receive good dental care and have good insulin control typically have a better chance at avoiding gum disease to help prevent tooth loss.[61]
There are several great exercises for diabetes, including biking, running, swimming, walking, strength training, and the like. The Centers for Disease Control and Prevention (CDC) recommends getting at least 150 minutes of moderate-intensity aerobic activity per week — that’s five 30-minute workouts — or 75 minutes of vigorous-intensity aerobic activity per week.
A further danger of insulin treatment is that while diabetic microangiopathy is usually explained as the result of hyperglycemia, studies in rats indicate that the higher than normal level of insulin diabetics inject to control their hyperglycemia may itself promote small blood vessel disease.[14] While there is no clear evidence that controlling hyperglycemia reduces diabetic macrovascular and cardiovascular disease, there are indications that intensive efforts to normalize blood glucose levels may worsen cardiovascular and cause diabetic mortality.[42]
If your cells aren’t responding to insulin, your pancreas produces more to turn up the volume on the signal that glucose is available and the cells should absorb it. When your pancreas can keep up, blood glucose stays within healthy ranges, and all is well. When your pancreas starts to poop out, you end up with insulin deficiency, which leads to blood sugar fluctuations and weight gain.

10. Molecular Hydrogen: One of the best natural remedies for diabetes, this potent antioxidant has proven successful in the treatment of several different health ailments, and is now showing promise as a treatment for diabetes. It works by triggering antioxidative activities within cells, and can promote increased metabolism as well as assist in the absorption of insulin. It’s taken topically, mixed in water, or inhaled as a gas. It has no toxicity levels, even if taken at high doses.
Diabetes is a group of diseases characterized by elevated blood glucose levels due to defects in insulin secretion, insulin action, or both. According to the American Diabetes Association (ADA), type 2 diabetes usually begins with insulin resistance. For those people whose bodies resist insulin, the pancreas secretes extra insulin to maintain normal glucose levels. As the condition progresses, insulin production gradually decreases and eventually reaches a level of deficiency that can no longer maintain blood glucose in the normal range. But how type 2 diabetes presents and progresses can vary considerably, as noted by the ADA, and methods of treatment can vary from patient to patient.
The first thing to understand when it comes to treating diabetes is your blood glucose level, which is just what it sounds like — the amount of glucose in the blood. Glucose is a sugar that comes from the foods we eat and also is formed and stored inside the body. It's the main source of energy for the cells of the body, and is carried to them through the blood. Glucose gets into the cells with the help of the hormone insulin.

As of 2015 the guidelines called for an HbA1c of around 7% or a fasting glucose of less than 7.2 mmol/L (130 mg/dL); however these goals may be changed after professional clinical consultation, taking into account particular risks of hypoglycemia and life expectancy.[18][19] Despite guidelines recommending that intensive blood sugar control be based on balancing immediate harms and long-term benefits, many people – for example people with a life expectancy of less than nine years – who will not benefit are over-treated and do not experience clinically meaningful benefits.[20]


Chinese medicine has been using cinnamon for medicinal purposes for hundreds of years. It has been the subject of numerous studies to determine its effect on blood glucose levels. A 2011 study has shown that cinnamon, in whole form or extract, helps lower fasting blood glucose levels. More studies are being done, but cinnamon is showing promise for helping to treat diabetes.
10. Molecular Hydrogen: One of the best natural remedies for diabetes, this potent antioxidant has proven successful in the treatment of several different health ailments, and is now showing promise as a treatment for diabetes. It works by triggering antioxidative activities within cells, and can promote increased metabolism as well as assist in the absorption of insulin. It’s taken topically, mixed in water, or inhaled as a gas. It has no toxicity levels, even if taken at high doses.
All of the above contributing factors don’t usually happen by themselves. Since the body functions as a whole, a problem in one area will usually correlate to problems in others. A combination of the factors above can be the catalyst for a full blown case of diabetes (or a lot of other diseases). While researchers often look at a single variable when trying to discover a cure for a disease, often the best approach is one that addresses the body as a whole. As with all diseases, the best cure is good prevention, but certain measures can help reverse disease once it has occurred.

If the T2DM has been recently diagnosed, there is a greater likelihood of being able to reverse the disease. Doing this requires losing approximately 5-10% of current body weight, balancing carbs and protein and engaging in daily physical exercise. A diabetes educator (C.D.E.) is the expert who can help put together a plan for realistic and permanent lifestyle changes.
Recently[when?] it has been suggested that a type of gastric bypass surgery may normalize blood glucose levels in 80–100% of severely obese patients with diabetes. The precise causal mechanisms are being intensively researched; its results may not simply be attributable to weight loss, as the improvement in blood sugars seems to precede any change in body mass. This approach may become a treatment for some people with type 2 diabetes, but has not yet been studied in prospective clinical trials.[83] This surgery may have the additional benefit of reducing the death rate from all causes by up to 40% in severely obese people.[84] A small number of normal to moderately obese patients with type 2 diabetes have successfully undergone similar operations.[85][86]
The twin cycle hypothesis of the etiology of type 2 diabetes. During long-term intake of more calories than are expended each day, any excess carbohydrate must undergo de novo lipogenesis, which particularly promotes fat accumulation in the liver. Because insulin stimulates de novo lipogenesis, individuals with a degree of insulin resistance (determined by family or lifestyle factors) will accumulate liver fat more readily than others because of higher plasma insulin levels. In turn, the increased liver fat will cause relative resistance to insulin suppression of hepatic glucose production. Over many years, a modest increase in fasting plasma glucose level will stimulate increased basal insulin secretion rates to maintain euglycemia. The consequent hyperinsulinemia will further increase the conversion of excess calories to liver fat. A cycle of hyperinsulinemia and blunted suppression of hepatic glucose production becomes established. Fatty liver leads to increased export of VLDL triacylglycerol (85), which will increase fat delivery to all tissues, including the islets. This process is further stimulated by elevated plasma glucose levels (85). Excess fatty acid availability in the pancreatic islet would be expected to impair the acute insulin secretion in response to ingested food, and at a certain level of fatty acid exposure, postprandial hyperglycemia will supervene. The hyperglycemia will further increase insulin secretion rates, with consequent enhancement of hepatic lipogenesis, spinning the liver cycle faster and driving the pancreas cycle. Eventually, the fatty acid and glucose inhibitory effects on the islets reach a trigger level that leads to a relatively sudden onset of clinical diabetes. Figure adapted with permission from Taylor (98).

Swift urges RDs to be informed and stay up-to-date as complementary and alternative medicine data evolves. Use a “whole systems, whole person” approach to health and healing. The Kripalu Center for Yoga and Health is a good place to start. “They have an outstanding program on diabetes care that’s multidisciplinary and integrative,” Swift says. You also can receive continuing education credits for attending.
Every single part of the body just starts to rot. This is precisely why type 2 diabetes, unlike virtually any other disease, affects every part of our body. Every organ suffers the long term effects of the excessive sugar load. Your eyes rot — and you go blind. Your kidneys rot — and you need dialysis. You heart rots — and you get heart attacks and heart failure. Your brain rots — and you get Alzheimers disease. Your liver rots — and you get fatty liver disease. Your legs rot — and you get diabetic foot ulcers. Your nerves rot — and you get diabetic neuropathy. No part of your body is spared.
It was once assumed that environmental factors took generations to affect a gene change, but research is now finding that a bad enough toxin or environmental stress can alter genes in a single generation. While genes can pre-dispose us to disease, the disease will only present itself in the presence of factors like toxins, poor diet or stress. A predisposition to diabetes, for instance, might be activated from toxins in foods, pesticides, herbicides, chemicals, or from a poor diet, especially when any of the above factors are also present.
Like trials with any other supplement or herbal product, the primary question we must answer is “What exactly was studied?”. The cinnamon you have in your kitchen may be a single species of plant or a mix of different cultivars. Ceylon cinnamon (Cinnamommum verum) is more commonly found in the West. Cassia cinnamon (Cinnamomum aromaticum) is the version of cinnamon that’s been studied in trials. The chemical hydroxychalcone has been identified as a potential active ingredient, which is believed to modify the sensitivity of cells to insulin, enhancing their uptake. If that’s the true mechanism of action, then it would work in a manner similar to that of the drugs Avandia, Actos, and metformin (Glucophage). Given the active ingredient (or ingredients) have not yet been definitively isolated, the issue of studying cinnamon is problematic. There’s no way to assess the potency of any batch, which complicates any evaluation. And that may be a reason why the research with cinnamon is inconsistent and largely disappointing.
Chromium plays a vital role in binding to and activating the insulin receptor on body cells, reducing insulin resistance. Supplemental chromium has been shown to lower blood sugar levels, lipids, A1C, and insulin in diabetic patients. It can also help decrease one’s appetite, particularly for sweets. A dosage from 200 mcg to 2,000 mcg a day is safe. Higher doses are unnecessary and can cause acute kidney failure.
Melissa Conrad Stöppler, MD, is a U.S. board-certified Anatomic Pathologist with subspecialty training in the fields of Experimental and Molecular Pathology. Dr. Stöppler's educational background includes a BA with Highest Distinction from the University of Virginia and an MD from the University of North Carolina. She completed residency training in Anatomic Pathology at Georgetown University followed by subspecialty fellowship training in molecular diagnostics and experimental pathology.
×