If your cells aren’t responding to insulin, your pancreas produces more to turn up the volume on the signal that glucose is available and the cells should absorb it. When your pancreas can keep up, blood glucose stays within healthy ranges, and all is well. When your pancreas starts to poop out, you end up with insulin deficiency, which leads to blood sugar fluctuations and weight gain.
Type 2 diabetes has long been known to progress despite glucose-lowering treatment, with 50% of individuals requiring insulin therapy within 10 years (1). This seemingly inexorable deterioration in control has been interpreted to mean that the condition is treatable but not curable. Clinical guidelines recognize this deterioration with algorithms of sequential addition of therapies. Insulin resistance and β-cell dysfunction are known to be the major pathophysiologic factors driving type 2 diabetes; however, these factors come into play with very different time courses. Insulin resistance in muscle is the earliest detectable abnormality of type 2 diabetes (2). In contrast, changes in insulin secretion determine both the onset of hyperglycemia and the progression toward insulin therapy (3,4). The etiology of each of these two major factors appears to be distinct. Insulin resistance may be caused by an insulin signaling defect (5), glucose transporter defect (6), or lipotoxicity (7), and β-cell dysfunction is postulated to be caused by amyloid deposition in the islets (8), oxidative stress (9), excess fatty acid (10), or lack of incretin effect (11). The demonstration of reversibility of type 2 diabetes offers the opportunity to evaluate the time sequence of pathophysiologic events during return to normal glucose metabolism and, hence, to unraveling the etiology.
The problem is, glucose is actually toxic if it is just floating around in your bloodstream, so that body has a defense mechanism. Any glucose that is not immediately used is stored as glycogen in the liver and the muscles. This would be all well and good except that your body has a limited number of glycogen receptors. When these are full, as they almost always are in inactive people, the body only has one option left: to store all the excess glucose as saturated fat within the body.
Over a year ago I was diagnosed with DT2. I was devastated… I told that I needed to take medication and eat according to the ADA recommendations. I never did anything that I was told. I refused to take the medication and went to a LCHF diet. My A1C has never been above a 4.7 for an entire year and I lost 80 pounds with doing nothing but eating. I feel great and my labs are stellar…
However, the observation that normalization of glucose in type 2 diabetes occurred within days after bariatric surgery, before substantial weight loss (15), led to the widespread belief that surgery itself brought about specific changes mediated through incretin hormone secretion (16,17). This reasoning overlooked the major change that follows bariatric surgery: an acute, profound decrease in calorie intake. Typically, those undergoing bariatric surgery have a mean body weight of ∼150 kg (15) and would therefore require a daily calorie intake of ∼13.4 MJ/day (3,200 kcal/day) for weight maintenance (18). This intake decreases precipitously at the time of surgery. The sudden reversal of traffic into fat stores brings about a profound change in intracellular concentration of fat metabolites. It is known that under hypocaloric conditions, fat is mobilized first from the liver and other ectopic sites rather than from visceral or subcutaneous fat stores (19). This process has been studied in detail during more moderate calorie restriction in type 2 diabetes over 8 weeks (20). Fasting plasma glucose was shown to be improved because of an 81% decrease in liver fat content and normalization of hepatic insulin sensitivity with no change in the insulin resistance of muscle.

Enriched with phytosterols, aloe vera can have an anti-hyperglycemic effect on the people with type 2 diabetics. Nutritionists suggest that it is a safe and natural source to alleviate fasting sugar levels in your blood. Also, you can prepare a mixture of turmeric, bay leaves, and aloe vera, this herbal medicine is said to control glucose in the blood.
Poor glycemic control refers to persistently elevated blood glucose and glycosylated hemoglobin levels, which may range from 200–500 mg/dl (11–28 mmol/L) and 9–15% or higher over months and years before severe complications occur. Meta-analysis of large studies done on the effects of tight vs. conventional, or more relaxed, glycemic control in type 2 diabetics have failed to demonstrate a difference in all-cause cardiovascular death, non-fatal stroke, or limb amputation, but decreased the risk of nonfatal heart attack by 15%. Additionally, tight glucose control decreased the risk of progression of retinopathy and nephropathy, and decreased the incidence peripheral neuropathy, but increased the risk of hypoglycemia 2.4 times.[21]
After you are diagnosed with diabetes, by following a healthy lifestyle, which includes a healthy diet along with exercise, you may be able to decrease your blood glucose levels to within normal range. Utilizing SMBG (self monitoring of blood glucose), you can see how different foods, as well as meals, influence your blood glucose levels. Doing SMBG along with a healthy diet and exercise is key to getting your diabetes under good control.

For type 2 diabetics, diabetic management consists of a combination of diet, exercise, and weight loss, in any achievable combination depending on the patient. Obesity is very common in type 2 diabetes and contributes greatly to insulin resistance. Weight reduction and exercise improve tissue sensitivity to insulin and allow its proper use by target tissues.[40] Patients who have poor diabetic control after lifestyle modifications are typically placed on oral hypoglycemics. Some Type 2 diabetics eventually fail to respond to these and must proceed to insulin therapy. A study conducted in 2008 found that increasingly complex and costly diabetes treatments are being applied to an increasing population with type 2 diabetes. Data from 1994 to 2007 was analyzed and it was found that the mean number of diabetes medications per treated patient increased from 1.14 in 1994 to 1.63 in 2007.[41]
As the fats decreased inside the liver and the pancreas, some individuals also experienced improved functioning of their pancreatic beta cells, which store and release insulin, a hormone that helps control blood sugar levels. The likelihood of regaining normal glucose control depends on the ability of the beta cells to recover, the study authors say.
A study published in 2014 by the Second University of Naples showed that a low-carbohydrate Mediterranean diet was able to achieve significant rates of remission in people with type 2 diabetes. After one year of following the diet, 15% of participants achieved remission and, after six years, 5% had achieved remission on the diet – a stunning achievement.
This article is great, it combines all of the info I have found, not only putting it into a well written article but adds info I had not found yet. I have struggled with type 2 and losing weight, starting an aggressive weight cardio plan in 2016 with an A1C level of 9.7%. Even after three months of an hour or more of weight lifting and 30-50 mins of hard hilly terrain bike riding, my bets A1C was 7.7% with lowering my carb count to the recommended range. After an injury caused me to have to stop many of the exercises for a bit my A1C went up to the 9% range. July this year my A1C was 9.9% and my Dr was talking about insulin shots, which I hate needles. One last ditch effort to find a solution and avoid the shots, I found an article about the benefits of intermittent fasting. I did a lot of research on the matter before creating my own version of a Keto diet, and went on a strict diet of 5-8 servings of green leafy vegetables a day, around 45g of carbs a day, 3oz of lean or healthy fat protein a meal and fasting for 18 hours between Dinner till lunch the next day for two and a half months. My A1C was 6.5, I lost 20lbs, and have tons of energy and no cravings. I have altered my diet to fit my new exercise plan, still 5-8 servings of vegetables a day, but have added occasional breakfasts of two eggs and 1/2 cup salsa, no more than 100g of carbs a day except my once a week cheat day that might go slightly higher if my blood sugar is in a good range, 6oz lean healthy fat protein, and a hard boiled egg in between meals.
Type 2 diabetes is usually first treated by increasing physical activity, and eliminating saturated fat and reducing sugar and carbohydrate intake with a goal of losing weight. These can restore insulin sensitivity even when the weight loss is modest, for example around 5 kg (10 to 15 lb), most especially when it is in abdominal fat deposits. Diets that are very low in saturated fats have been claimed to reverse insulin resistance.[79][80]
Insulin therapy creates risk because of the inability to continuously know a person's blood glucose level and adjust insulin infusion appropriately. New advances in technology have overcome much of this problem. Small, portable insulin infusion pumps are available from several manufacturers. They allow a continuous infusion of small amounts of insulin to be delivered through the skin around the clock, plus the ability to give bolus doses when a person eats or has elevated blood glucose levels. This is very similar to how the pancreas works, but these pumps lack a continuous "feed-back" mechanism. Thus, the user is still at risk of giving too much or too little insulin unless blood glucose measurements are made.

There were 298 adults on the trial aged 20–65, who had been diagnosed with type 2 diabetes within the last six years, from 49 primary care practices in Scotland and Tyneside. Half of the practices put their patients on the very low calorie diet, while the rest were a control group, in which patients received usual care. Only 4% of the control group managed to achieve remission.
Type 2 diabetes is a condition that is characterised by chronically elevated blood sugar levels. However, the main cause as well as the driver for this condition is something called Insulin Resistance. When you eat certain foods, particularly refined carbohydrates, that food is converted to sugar inside your body. Your body’s way of dealing with this sugar is to produce a hormone called insulin. Insulin moves the sugar inside your cells so that it can be used for energy. Sounds great, right?
And when I talk about reducing certain carbohydrates, I mainly mean reducing your intake of  refined carbohydrates such as pasta, rice and bread. Non starchy vegetables (such as broccoli, cabbage and cauliflower) are fine and can be eaten in abundance. Many fruits are packed with carbohydrates, so if you’re trying to reduce your carb intake, try and limit your intake to low-carb fruit, such as rhubarb, watermelon, berries, peaches and blackberries.
As a bonus, stress relief may help you sleep better, which is important because studies show that not getting enough sleep can worsen type 2 diabetes. Sleeping less than six hours a night has also been found to contribute to impaired glucose tolerance, a condition that often precedes type 2 diabetes. In fact, a review published in 2015 in Diabetes Care analyzed 10 studies that involved more than 18,000 participants combined and found the lowest risk of type 2 diabetes in the group of participants that slept seven to eight hours per day. That’s the minimum recommended amount of sleep for most adults, according to the National Sleep Foundation.
Alcohol: Alcohol can dangerously increase blood sugar and lead to liver toxicity. Research published in Annals of Internal Medicine found that there was a 43 percent increased incidence of diabetes associated with heavy consumption of alcohol, which is defined as three or more drinks per day. (8) Beer and sweet liquors are especially high in carbohydrates and should be avoided.
Pramlintide (Symlin) was the first in a class of injectable, anti-hyperglycemic medications for use in addition to insulin for type 1 diabetes or type 2 diabetes. Pramlintide is a synthetic analog of human amylin, a naturally occurring hormone made by the pancreas to help control glucose after meals. Similar to insulin, amylin is absent or deficient in person with diabetes.
×