“The degree of carbohydrate restriction that we recommend to establish and then maintain nutritional ketosis depends upon individual factors such degree of insulin resistance (metabolic syndrome or type 2 diabetes?) and physical activity. These starting levels of carb restriction typically vary between 30 and 60 grams per day of total carbs. The best way to determine one’s carbohydrate tolerance is to directly measure blood ketones with a finger-stick glucometer that also accommodates ketone testing.
Exercise naturally supports your metabolism by burning fat and building lean muscle. To prevent and reverse diabetes, make exercise a part of your daily routine. This doesn’t necessary mean that you have to spend time at the gym. Simple forms of physical activity, like getting outside and walking for 20 to 30 minute every day, can be extremely beneficial, especially after meals. Practicing yoga or stretching at home or in a studio is another great option.
During this 8-week study, β-cell function was tested by a gold standard method that used a stepped glucose infusion with subsequent arginine bolus (21). In type 2 diabetes, the glucose-induced initial rapid peak of insulin secretion (the first phase insulin response) typically is absent. This was confirmed at baseline in the study, but the first phase response increased gradually over 8 weeks of a very-low-calorie diet to become indistinguishable from that of age- and weight-matched nondiabetic control subjects. The maximum insulin response, as elicited by arginine bolus during hyperglycemia, also normalized. Pancreas fat content decreased gradually during the study period to become the same as that in the control group, a time course matching that of the increase in both first phase and total insulin secretion (Fig. 3). Fat content in the islets was not directly measured, although it is known that islets take up fat avidly (24) and that islet fat content closely reflects total pancreatic fat content in animal models (25). Although a cause-and-effect relationship between raised intraorgan fat levels and metabolic effect has not yet been proven, the time course data following the dietary intervention study are highly suggestive of a causal link (21).
Chronic exposure of β-cells to triacylglycerol or fatty acids either in vitro or in vivo decreases β-cell capacity to respond to an acute increase in glucose levels (57,58). This concept is far from new (59,60), but the observations of what happens during reversal of diabetes provide a new perspective. β-Cells avidly import fatty acids through the CD36 transporter (24,61) and respond to increased fatty acid supply by storing the excess as triacylglycerol (62). The cellular process of insulin secretion in response to an increase in glucose supply depends on ATP generation by glucose oxidation. However, in the context of an oversupply of fatty acids, such chronic nutrient surfeit prevents further increases in ATP production. Increased fatty acid availability inhibits both pyruvate cycling, which is normally increased during an acute increase in glucose availability, and pyruvate dehydrogenase activity, the major rate-limiting enzyme of glucose oxidation (63). Fatty acids have been shown to inhibit β-cell proliferation in vitro by induction of the cell cycle inhibitors p16 and p18, and this effect is magnified by increased glucose concentration (64). This antiproliferative effect is specifically prevented by small interfering RNA knockdown of the inhibitors. In the Zucker diabetic fatty rat, a genetic model of spontaneous type 2 diabetes, the onset of hyperglycemia is preceded by a rapid increase in pancreatic fat (58). It is particularly noteworthy that the onset of diabetes in this genetic model is completely preventable by restriction of food intake (65), illustrating the interaction between genetic susceptibility and environmental factors.

12. Consult a naturopathic, homeopathic, and/or Chinese medical doctor: Alternative practitioners are trained to treat the patient as a whole, organic being — not just their disease. This may help you develop a well-rounded treatment approach, as well as provide you with new information and perspectives on the disease and form of natural remedies for diabetes.
There is no prescribed diet plan for diabetes and no single “diabetes diet”. Eating plans are tailored to fit each individual's needs, schedules, and eating habits. Each diabetes diet plan must be balanced with the intake of insulin and other diabetes medications. In general, the principles of a healthy diabetes diet are the same for everyone. Consumption of various foods in a healthy diet includes whole grains, fruits, non-fat dairy products, beans, lean meats, vegetarian substitutes, poultry, or fish.