Thank you Dr. Hallberg!! I am a Family Nurse Practitioner who did tele-medicine for 5 years before retiring. At 66 years of age my doctor diagnosed me with Type II Diabetes. I refused to take the medication and instead opted for a 6 month trial to lose enough weight to make the difference. After 4 months I’d lost 8 pounds and still had high blood sugars. Then my husband’s PCP recommended watching your TedTalk. That was the beginning and we both jumped into LCHF/Keto with both feet using Diet Doctor and you as our main resources. My husband has lost 38 pounds and I have lost 42 pounds since November 2017. More importantly my lab results today were a HgbA1c of 5.3 with average blood glucose of 105. I have about 50 more pounds to go to be at a healthier weight BUT I owe you a big thank you!! Now I’m working to encourage others of my friends, family and coaching clients to give LCHF/Keto a try! Thanks!!!!
When this happens for a period of time, the cells start to become resistant to the presence of insulin, causing a vicious cycle. The body then releases even more insulin, trying desperately to get the cells to uptake the toxic glucose. The presence of excess insulin in the bloodstream is also toxic and further damages the receptors on these cells. Eventually, the insulin allows the glucose access to your fat cells to get it out of the bloodstream. In other words- Fat isn’t stored as fat in the body- Sugar (from carbohydrates) is stored as fat!

Since the body functions as a whole, it is logical that when one hormone or part of the endocrine system is suffering, the other would be affected as well. This is the reason behind the recent research linking high stress levels to diabetes and other health problems. Most people think of stress only in the mental context (as in, “I’ve got a million things to do, I’m running late and I don’t have time to get anything done… I’m so stressed”) but stress can be physical, psychological, emotional, or mental and can be triggered by many factors including:
“Diabetes type 1 is very different from your standard disease. Insulin requirements vary greatly from one day to another and there is no way patients can know what they need,” Roman Hovorka, Professor at the University of Cambridge, explained to me during an interview. His research group is working on the development of an algorithm that can accurately predict insulin requirements for a specific patient at any moment.
Patients with type 1 diabetes mellitus require direct injection of insulin as their bodies cannot produce enough (or even any) insulin. As of 2010, there is no other clinically available form of insulin administration other than injection for patients with type 1: injection can be done by insulin pump, by jet injector, or any of several forms of hypodermic needle. Non-injective methods of insulin administration have been unattainable as the insulin protein breaks down in the digestive tract. There are several insulin application mechanisms under experimental development as of 2004, including a capsule that passes to the liver and delivers insulin into the bloodstream.[39] There have also been proposed vaccines for type I using glutamic acid decarboxylase (GAD), but these are currently not being tested by the pharmaceutical companies that have sublicensed the patents to them.
Well, I don’t know much about VCRs, but I do know about type 2 diabetes. I could write an entire book about obesity (oh, wait, I did that already), or fasting (oh, wait, done too) or type 2 diabetes (next up for 2018). But many of you will not want to go through the entire instruction manual. So this is your quick start guide for reversing your type 2 diabetes.
Insulin therapy creates risk because of the inability to continuously know a person's blood glucose level and adjust insulin infusion appropriately. New advances in technology have overcome much of this problem. Small, portable insulin infusion pumps are available from several manufacturers. They allow a continuous infusion of small amounts of insulin to be delivered through the skin around the clock, plus the ability to give bolus doses when a person eats or has elevated blood glucose levels. This is very similar to how the pancreas works, but these pumps lack a continuous "feed-back" mechanism. Thus, the user is still at risk of giving too much or too little insulin unless blood glucose measurements are made.
Exercise– Even the mainstream medical community recognizes the advantage of exercise, as it increases the muscles ability to use insulin and over time can help fix insulin resistance. All exercise isn’t created equal though and fortunately, smaller amounts of high intensity exercise have been shown to have a better effect on insulin levels (and weight loss) than an hour of daily moderate cardio. According to the Healthy Skeptic: “A pair of studies done at McMaster University found that “6-minutes of pure, hard exercise once a week could be just as effective as an hour of daily moderate activity“, according to the June 6, 2005 CNN article reporting on the study.” I recommend high intensity exercise anyway for its various health advantages, and it is great for diabetes control. too.

Regular blood testing, especially in type 1 diabetics, is helpful to keep adequate control of glucose levels and to reduce the chance of long term side effects of the disease. There are many (at least 20+) different types of blood monitoring devices available on the market today; not every meter suits all patients and it is a specific matter of choice for the patient, in consultation with a physician or other experienced professional, to find a meter that they personally find comfortable to use. The principle of the devices is virtually the same: a small blood sample is collected and measured. In one type of meter, the electrochemical, a small blood sample is produced by the patient using a lancet (a sterile pointed needle). The blood droplet is usually collected at the bottom of a test strip, while the other end is inserted in the glucose meter. This test strip contains various chemicals so that when the blood is applied, a small electrical charge is created between two contacts. This charge will vary depending on the glucose levels within the blood. In older glucose meters, the drop of blood is placed on top of a strip. A chemical reaction occurs and the strip changes color. The meter then measures the color of the strip optically.

“The problem is we don’t treat diabetes as a dietary problem; we treat it with a lot of drugs, and that never addresses the root problem of the diabetes,” says principal investigator Jason Fung, MD, a kidney specialist at Scarborough and Rouge Hospital in Toronto, Canada, and author of The Complete Guide to Fasting,and The Obesity Code, a 2016 book thought to help popularize intermittent fasting.
Pramlintide (Symlin) was the first in a class of injectable, anti-hyperglycemic medications for use in addition to insulin for type 1 diabetes or type 2 diabetes. Pramlintide is a synthetic analog of human amylin, a naturally occurring hormone made by the pancreas to help control glucose after meals. Similar to insulin, amylin is absent or deficient in person with diabetes.