In obese young people, decreased β-cell function has recently been shown to predict deterioration of glucose tolerance (4,78). Additionally, the rate of decline in glucose tolerance in first-degree relatives of type 2 diabetic individuals is strongly related to the loss of β-cell function, whereas insulin sensitivity changes little (79). This observation mirrors those in populations with a high incidence of type 2 diabetes in which transition from hyperinsulinemic normal glucose tolerance to overt diabetes involves a large, rapid rise in glucose levels as a result of a relatively small further loss of acute β-cell competence (3). The Whitehall II study showed in a large population followed prospectively that people with diabetes exhibit a sudden rise in fasting glucose as β-cell function deteriorates (Fig. 5) (80). Hence, the ability of the pancreas to mount a normal, brisk insulin response to an increasing plasma glucose level is lost in the 2 years before the detection of diabetes, although fasting plasma glucose levels may have been at the upper limit of normal for several years. This was very different from the widely assumed linear rise in fasting plasma glucose level and gradual β-cell decompensation but is consistent with the time course of markers of increased liver fat before the onset of type 2 diabetes observed in other studies (81). Data from the West of Scotland Coronary Prevention Study demonstrated that plasma triacylglycerol and ALT levels were modestly elevated 2 years before the diagnosis of type 2 diabetes and that there was a steady rise in the level of this liver enzyme in the run-up to the time of diagnosis (75).
The ripe fruit of this cactus has been shown in some small studies to lower blood sugar ­levels. You may be able to find the fruit in your grocery store, but if not, look for it as a juice or powder at health food stores. Researchers speculate that the fruit may possibly lower blood sugar because it contains components that work similarly to insulin. The fruit is also high in fiber. Try these foods for the best diabetic diet.
Random blood sugar test. A blood sample will be taken at a random time. Blood sugar values are expressed in milligrams per deciliter (mg/dL) or millimoles per liter (mmol/L). Regardless of when you last ate, a random blood sugar level of 200 mg/dL (11.1 mmol/L) or higher suggests diabetes, especially when coupled with any of the signs and symptoms of diabetes, such as frequent urination and extreme thirst.
Curcumin is a bright yellow chemical produced by the spice turmeric, among other plants. Curcumin seems to have multiple benefits for diabetes symptoms. It has been shown to be a marked inhibitor of reactive oxygen species that promote oxidation damage in cells. Curcumin lowers inflammatory chemicals like tumor necrosis factor-alpha, and that’s good because TNF-a causes insulin resistance and irritates fatty livers. Curcumin can reduce another pro-inflammatory chemical called NF-KB. The above-mentioned actions provide a benefit in diabetes protection and reduce the risk of developing diabetes symptoms and complications. Curcumin has also been shown to enhance pancreatic beta cell functioning and reduce fatty liver deposition. It reduces high blood sugar, A1C, and insulin resistance. It was also shown to reduce the onset of Alzheimer’s disease, and that is a higher risk in diabetic patients than in nondiabetic patients. A good dose is 200 to 3,000 mg a day.
The primary issue requiring management is that of the glucose cycle. In this, glucose in the bloodstream is made available to cells in the body; a process dependent upon the twin cycles of glucose entering the bloodstream, and insulin allowing appropriate uptake into the body cells. Both aspects can require management. Another issue that ties along with the glucose cycle is getting a balanced amount of the glucose to the major organs so they are not affected negatively.
“High glycemic index foods are going to be primarily processed foods,” says Lori Chong, RD, CDE, at The Ohio State University Wexner Medical Center in Columbus. Those processed foods tend to have more white sugar and flour in them, which are higher on the GI, she says. Foods lower on the GI include vegetables, especially non-starchy vegetables, like broccoli, cauliflower, and leafy greens and whole-grain products, such as brown rice (as opposed to white rice), Chong says. She notes that even many fruits are low on the GI, with pineapple and dried fruit being some of the highest (Berries, apples, and pears tend to be fairly low.)
On a personal note, I always encourage full disclosure of a history of diabetes, even if currently diet controlled. Although a glucose level may now be within normal range, certain medical treatments/medications/illnesses may trigger a hyperglycemic (high blood glucose) level. The fully informed medical provider will closely monitor these patients and prevent uncontrolled glucose spikes from occurring.
HoneyColony and its materials are not intended to treat, diagnose, cure or prevent any disease. All material on HoneyColony is provided for educational purposes only. Always seek the advice of your physician or another qualified healthcare provider for any questions you have regarding a medical condition, and before undertaking any diet, exercise or other health related program.
A: Fasting plasma glucose and weight change 2 years after randomization either to gastric banding or to intensive medical therapy for weight loss and glucose control. Data plotted with permission from Dixon et al. (13). B: Early changes in fasting plasma glucose level following pancreatoduodenal bypass surgery. A decrease into the normal range was seen within 7 days. Reproduced with permission from Taylor (98).
Foods with a low glycemic load: The glycemic index of a food tells you about the blood glucose-raising potential of the food. Foods that have a high glycemic index are converted into sugar after being eaten more quickly than low glycemic foods. If you are fighting diabetes, stick to low glycemic foods like non-starchy vegetables, stone fruits and berries, nuts, seeds, avocados, coconut, organic meat, eggs, wild-caught fish, and raw pastured dairy.
“I have many ways to help patients manage diabetes, but it’s very hard to reverse,” says Dr. Rita Louard, director of the Clinical Diabetes Program at Montefiore Health System in Bronx, New York. Still, some diabetes experts will use the word “reverse” when talking about this topic, Louard says, acknowledging the controversy that exists when discussing diabetes reversal.
Type 2 diabetes is on the rise and is associated with insulin resistance. There are many factors which contribute to developing this disease some of which are modifiable and some of which are nonmodifiable. Modifiable risks which individuals can impact include weight, diet and exercise. It has been reported that gastric bypass patients who have T2DM are “cured” of the disease after surgery. That is a more drastic measure which many people are not ready or willing to consider.
Type 2 diabetes develops when the body cannot use insulin properly or make enough insulin, so the body cannot properly use or store glucose (a form of sugar) and sugar backs up into the bloodstream, raising blood sugar levels. In the United States, some 8.9 percent of adults 20 and older have been found to have diabetes, and health officials estimate that another 3.5 percent have undiagnosed diabetes.

The benefits of T1D medications far outweigh their associated side effects. The most common side effects of insulin are injection site reactions, which includes redness, soreness or irritation around the area. People can also experience lowered potassium levels and a risk of hypoglycemia. While these side effects can sound daunting, keep in mind that many people using these medications don’t experience serious side effects at all.


Most of us ignored the manual, just plugged it in and tried to figure out the rest. That’s why we all had the blinking 12:00 on. Today, most new electronics now come with a quick start guide which has the most basic 4 or 5 steps to get your machine working and then anything else you needed, you could reference the detailed instruction manual. Instruction manuals are just so much more useful this way.
Within the hepatocyte, fatty acids can only be derived from de novo lipogenesis, uptake of nonesterified fatty acid and LDL, or lipolysis of intracellular triacylglycerol. The fatty acid pool may be oxidized for energy or may be combined with glycerol to form mono-, di-, and then triacylglycerols. It is possible that a lower ability to oxidize fat within the hepatocyte could be one of several susceptibility factors for the accumulation of liver fat (45). Excess diacylglycerol has a profound effect on activating protein kinase C epsilon type (PKCε), which inhibits the signaling pathway from the insulin receptor to insulin receptor substrate 1 (IRS-1), the first postreceptor step in intracellular insulin action (46). Thus, under circumstances of chronic energy excess, a raised level of intracellular diacylglycerol specifically prevents normal insulin action, and hepatic glucose production fails to be controlled (Fig. 4). High-fat feeding of rodents brings about raised levels of diacylglycerol, PKCε activation, and insulin resistance. However, if fatty acids are preferentially oxidized rather than esterified to diacylglycerol, then PKCε activation is prevented, and hepatic insulin sensitivity is maintained. The molecular specificity of this mechanism has been confirmed by use of antisense oligonucleotide to PKCε, which prevents hepatic insulin resistance despite raised diacylglycerol levels during high-fat feeding (47). In obese humans, intrahepatic diacylglycerol concentration has been shown to correlate with hepatic insulin sensitivity (48,49). Additionally, the presence of excess fatty acids promotes ceramide synthesis by esterification with sphingosine. Ceramides cause sequestration of Akt2 and activation of gluconeogenic enzymes (Fig. 4), although no relationship with in vivo insulin resistance could be demonstrated in humans (49). However, the described intracellular regulatory roles of diacylglycerol and ceramide are consistent with the in vivo observations of hepatic steatosis and control of hepatic glucose production (20,21).
Articles and information on this website may only be copied, reprinted, or redistributed with written permission (but please ask, we like to give written permission!) The purpose of this Blog is to encourage the free exchange of ideas. The entire contents of this website is based upon the opinions of Dave Asprey, unless otherwise noted. Individual articles are based upon the opinions of the respective authors, who may retain copyright as marked. The information on this website is not intended to replace a one-on-one relationship with a qualified health care professional and is not intended as medical advice. It is intended as a sharing of knowledge and information from the personal research and experience of Dave Asprey and the community. We will attempt to keep all objectionable messages off this site; however, it is impossible to review all messages immediately. All messages expressed on The Bulletproof Forum or the Blog, including comments posted to Blog entries, represent the views of the author exclusively and we are not responsible for the content of any message.
A rapid-acting inhaled insulin (Afrezza) is also FDA-approved for use before meals. It must be used in combination with long-acting insulin in patients with type 1 diabetes and should not be used by those who smoke or have chronic lung disease. It comes as a single dose cartridge.Premixed insulin is also available for people who need to use more than one type of insulin.

Low blood sugar, or hypoglycemia, is a syndrome in which a person's blood sugar is dangerously low. People with type 1 and type 2 diabetes are at risk for this condition. There are other diseases that can cause a person's blood sugar levels to go too low, for example, pancreatitis, Cushing's syndrome, and pancreatic cancer. Symptoms and signs that your blood sugar levels are too low include:
But look closer. The results may be statistically significant, but they’re not that impressive compared to medication. Cinnamon lowered A1C by 0.09%, versus the usual 1% with medication. Give A1c reflects overall glucose trends, cinnamon doesn’t look that impressive. Even at the extreme of the confidence interval, cinnamon has, at best, 10% of the efficacy of drug treatments. At worst, it’s completely ineffective.
High blood sugar (hyperglycemia). Your blood sugar level can rise for many reasons, including eating too much, being sick or not taking enough glucose-lowering medication. Check your blood sugar level often, and watch for signs and symptoms of high blood sugar — frequent urination, increased thirst, dry mouth, blurred vision, fatigue and nausea. If you have hyperglycemia, you'll need to adjust your meal plan, medications or both.

Acupuncture is a procedure where a practitioner inserts very thin needles into specific points on your skin. Some scientists say that acupuncture triggers the release of the body's natural painkillers. Acupuncture has been shown to offer relief from chronic pain and is sometimes used by people with neuropathy, the painful nerve damage that can happen with diabetes.


Whenever this seasonal fruit is available in the market, try to include it in your diet as it can be very effective for the pancreas. Else you can make a powder of dried seeds of Jambul fruit and eat this powder with water twice a day. This fruit is native to India and its neighboring countries but you can find it at Asian markets and herbal shops.
If a drug treatment’s efficacy is questionable, the adverse event and safety profile is even more important. As a popular food additive, cinnamon seems safe when consumed at doses of a few grams per day. (1 teaspoon of the powder is about 4.75 grams).  While the trials have been small and short in duration, no significant adverse events have been reported. It is Generally Recognised as Safe (GRAS), as a seasoning and flavoring. However, reversible liver damage has been reported with therapeutic use, due to coumarin, a chemical also present in Cassia cinnamon. Those with liver impairment or dysfunction may be at greater risk of harm. There are no published long-term studies with cinnamon that inform us whether chronic consumption of high doses is safe.

The problem is, glucose is actually toxic if it is just floating around in your bloodstream, so that body has a defense mechanism. Any glucose that is not immediately used is stored as glycogen in the liver and the muscles. This would be all well and good except that your body has a limited number of glycogen receptors. When these are full, as they almost always are in inactive people, the body only has one option left: to store all the excess glucose as saturated fat within the body.


Insulin is a naturally occurring hormone in your pancreas that helps your body use blood sugar and keeps blood sugar within a healthy range. But in the case of type 2 diabetes, a person’s body doesn’t use insulin properly, leading to insulin resistance. When your pancreas simply can't make enough insulin or use it well enough to control blood sugar, your doctor is likely to prescribe insulin injections.

Diet management allows control and awareness of the types of nutrients entering the digestive system, and hence allows indirectly, significant control over changes in blood glucose levels. Blood glucose monitoring allows verification of these, and closer control, especially important since some symptoms of diabetes are not easy for the patient to notice without actual measurement.


One such study, published in July 2018 in the Journal of the American Medical Association, found that intermittent fasting was no better at improving type 2 diabetes participants’ blood sugar levels than regular caloric restriction after one year. Previous studies on mice suggest intermittent fasting may improve memory, reduce disease risk, and aid with weight loss, according to an article published in June 2013 in the journal CMAJ, but, as Dr. Gabbay points out, “That doesn’t always translate to people.”

When islet cells have been transplanted via the Edmonton protocol, insulin production (and glycemic control) was restored, but at the expense of continued immunosuppression drugs. Encapsulation of the islet cells in a protective coating has been developed to block the immune response to transplanted cells, which relieves the burden of immunosuppression and benefits the longevity of the transplant.[72]

Some people with type 2 diabetes can manage their disease by making healthy food choices and being more physically active. Many people with type 2 diabetes need diabetes medicines as well. These medicines may include diabetes pills or medicines you inject under your skin, such as insulin. In time, you may need more than one diabetes medicine to control your blood glucose. Even if you do not take insulin, you may need it at special times, such as during pregnancy or if you are in the hospital.
Try to keep carbohydrate amounts stable across the day (some choose lower carbohydrate targets), stand more and sit less and include activities that increase the heart rate and also strength based activities most days across the week. Think about the amount of stress you experience to see how it is increasing your blood glucose levels. If you smoke – stop because it is speeding up the damage to your blood vessels. If you drink alcohol, limit how much you drink.
In addition, a strong partnership between the patient and the primary healthcare provider – general practitioner or internist – is an essential tool in the successful management of diabetes. Often the primary care doctor makes the initial diagnosis of diabetes and provides the basic tools to get the patient started on a management program. Regular appointments with the primary care physician and a certified diabetes educator are some of the best things a patient can do in the early weeks after a diagnosis of diabetes. Upon the diagnosis of diabetes, the primary care physician, specialist, or endocrinologist will conduct a full physical and medical examination. A thorough assessment covers topics such as:
As self-management of diabetes typically involves lifestyle modifications, adherence may pose a significant self-management burden on many individuals.[65] For example, individuals with diabetes may find themselves faced with the need to self-monitor their blood glucose levels, adhere to healthier diets and maintain exercise regimens regularly in order to maintain metabolic control and reduce the risk of developing cardiovascular problems. Barriers to adherence have been associated with key psychological mechanisms: knowledge of self-management, beliefs about the efficacy of treatment and self-efficacy/perceived control.[65] Such mechanisms are inter-related, as one's thoughts (e.g. one's perception of diabetes, or one's appraisal of how helpful self-management is) is likely to relate to one's emotions (e.g. motivation to change), which in turn, affects one's self-efficacy (one's confidence in their ability to engage in a behaviour to achieve a desired outcome).[66]
Cyrus Khambatta earned a PhD in Nutritional Biochemistry from UC Berkeley after being diagnosed with type 1 diabetes in his senior year of college at Stanford University in 2002. He is an internationally recognized nutrition and fitness coach for people living with type 1, type 1.5, prediabetes and type 2 diabetes, and has helped hundreds of people around the world achieve exceptional insulin sensitivity by adopting low-fat, plant-based whole foods nutrition.
Type 2 diabetes develops when the body cannot use insulin properly or make enough insulin, so the body cannot properly use or store glucose (a form of sugar) and sugar backs up into the bloodstream, raising blood sugar levels. In the United States, some 8.9 percent of adults 20 and older have been found to have diabetes, and health officials estimate that another 3.5 percent have undiagnosed diabetes.
All of the above contributing factors don’t usually happen by themselves. Since the body functions as a whole, a problem in one area will usually correlate to problems in others. A combination of the factors above can be the catalyst for a full blown case of diabetes (or a lot of other diseases). While researchers often look at a single variable when trying to discover a cure for a disease, often the best approach is one that addresses the body as a whole. As with all diseases, the best cure is good prevention, but certain measures can help reverse disease once it has occurred.
Diabetic persons are advised to make morning appointments to the dental care provider as during this time of the day the blood sugar levels tend to be better kept under control. Not least, individuals who suffer from diabetes must make sure both their physician and dental care provider are informed and aware of their condition, medical history and periodontal status.
Cyrus Khambatta earned a PhD in Nutritional Biochemistry from UC Berkeley after being diagnosed with type 1 diabetes in his senior year of college at Stanford University in 2002. He is an internationally recognized nutrition and fitness coach for people living with type 1, type 1.5, prediabetes and type 2 diabetes, and has helped hundreds of people around the world achieve exceptional insulin sensitivity by adopting low-fat, plant-based whole foods nutrition.
NOTE: Do not eat or drink anything else during the three hours of testing. You may be able to get an accurate baseline of your insulin response after only a few days, but a week provides more data. If you are already diabetic, you probably have close ideas on these numbers, but take readings at the suggested times anyway to figure out your baseline.
Jump up ^ Tuomilehto, J; Lindström, J; Eriksson, JG; Valle, TT; Hämäläinen, H; Ilanne-Parikka, P; Keinänen-Kiukaanniemi, S; Laakso, M; et al. (2001). "Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance". The New England Journal of Medicine. 344 (18): 1343–50. doi:10.1056/NEJM200105033441801. PMID 11333990.
All of the above contributing factors don’t usually happen by themselves. Since the body functions as a whole, a problem in one area will usually correlate to problems in others. A combination of the factors above can be the catalyst for a full blown case of diabetes (or a lot of other diseases). While researchers often look at a single variable when trying to discover a cure for a disease, often the best approach is one that addresses the body as a whole. As with all diseases, the best cure is good prevention, but certain measures can help reverse disease once it has occurred.
Recent advances and research in management of Diabetes with traditionally used natural therapies have resulted in development of products from that facilitate production and proper utilization of insulin in the body. These preparations (Biogetica) are natural and work in conjugation with conventional therapies as supportive treatment protocols, they are absolutely safe and the patients are never at risk of developing hypoglycemic attacks due to the therapies.
[SqlException (0x80131904): A network-related or instance-specific error occurred while establishing a connection to SQL Server. The server was not found or was not accessible. Verify that the instance name is correct and that SQL Server is configured to allow remote connections. (provider: SQL Network Interfaces, error: 26 - Error Locating Server/Instance Specified)]
The twin cycle hypothesis of the etiology of type 2 diabetes. During long-term intake of more calories than are expended each day, any excess carbohydrate must undergo de novo lipogenesis, which particularly promotes fat accumulation in the liver. Because insulin stimulates de novo lipogenesis, individuals with a degree of insulin resistance (determined by family or lifestyle factors) will accumulate liver fat more readily than others because of higher plasma insulin levels. In turn, the increased liver fat will cause relative resistance to insulin suppression of hepatic glucose production. Over many years, a modest increase in fasting plasma glucose level will stimulate increased basal insulin secretion rates to maintain euglycemia. The consequent hyperinsulinemia will further increase the conversion of excess calories to liver fat. A cycle of hyperinsulinemia and blunted suppression of hepatic glucose production becomes established. Fatty liver leads to increased export of VLDL triacylglycerol (85), which will increase fat delivery to all tissues, including the islets. This process is further stimulated by elevated plasma glucose levels (85). Excess fatty acid availability in the pancreatic islet would be expected to impair the acute insulin secretion in response to ingested food, and at a certain level of fatty acid exposure, postprandial hyperglycemia will supervene. The hyperglycemia will further increase insulin secretion rates, with consequent enhancement of hepatic lipogenesis, spinning the liver cycle faster and driving the pancreas cycle. Eventually, the fatty acid and glucose inhibitory effects on the islets reach a trigger level that leads to a relatively sudden onset of clinical diabetes. Figure adapted with permission from Taylor (98).
Diabetes has grown to “epidemic” proportions, and the latest statistics revealed by the U.S. Centers for Disease Control and Prevention state that 30.3 million Americans have diabetes, including the 7.2 million people who weren’t even aware of it. Diabetes is affecting people of all ages, including 132,000 children and adolescents younger than 18 years old. (2)
FEED YOUR GUT BUGS, not just yourself. There are trillions of bugs that live in your gut – their health is critical in determining your health. Many studiesshow links between the state of your gut bugs (your microbiota) and type 2 diabetes. Start improving the health of your gut immediately by eating five servings of different coloured vegetables each day. The non digestible fibre in vegetables is the preferred food for your gut bacteria and when your gut bugs are happy, you will be happy. The wider the variety of colours, the more phytonutrients you will be getting.
“In the realm of fatty liver disease, which is highly associated with either prediabetes or fully diagnosed type 2 diabetes, we do know that decreased fat and decreased weight are associated with far better glucose control,” says Galati, who is the author of Eating Yourself Sick: How to Stop Obesity, Fatty Liver, and Diabetes From Killing You and Your Family. “This research reinforces the idea that patients with type 2 diabetes who are obese — which is the vast majority — can improve their blood sugar control as well as their long-term outlook with weight loss.”

In addition, a strong partnership between the patient and the primary healthcare provider – general practitioner or internist – is an essential tool in the successful management of diabetes. Often the primary care doctor makes the initial diagnosis of diabetes and provides the basic tools to get the patient started on a management program. Regular appointments with the primary care physician and a certified diabetes educator are some of the best things a patient can do in the early weeks after a diagnosis of diabetes. Upon the diagnosis of diabetes, the primary care physician, specialist, or endocrinologist will conduct a full physical and medical examination. A thorough assessment covers topics such as:


Blood sugar level is measured by means of a glucose meter, with the result either in mg/dL (milligrams per deciliter in the US) or mmol/L (millimoles per litre in Canada and Eastern Europe) of blood. The average normal person has an average fasting glucose level of 4.5 mmol/L (81 mg/dL), with a lows of down to 2.5 and up to 5.4 mmol/L (65 to 98 mg/dL).[7]
6. Eat a diet high in fiber and complex carbohydrates: Fiber-rich foods help reduce blood sugar surges, and can contribute to the body feeling full, which can stop the urge to overeat. Complex carbohydrates are foods that have a complex chemical structure and break down slowly in the body, providing a steady release of sugars into the bloodstream. Foods that are both high in fiber and rich in complex carbohydrates are brown rice, whole grains, vegetables, beans, and legumes..

They would often say to me, “Doctor. You’ve always said that weight loss is the key to reversing diabetes. Yet you prescribed me a drug that made me gain 25 pounds. How is that good?” I never had a good answer, because none existed. The truth was that insulin was not good for type 2 diabetes — it was only good for reducing blood glucose. The key was weight loss, whereupon the diabetes often goes away or at least gets significantly better. So, logically, insulin does not help reverse the disease, but actually worsens it.
Imagine that you hide your kitchen garbage under the rug instead throwing it outside in the trash. You can’t see it, so you can pretend your house is clean. When there’s no more room underneath the rug, you throw the garbage into your bedroom, and bathroom, too. Anywhere where you don’t have to see it. Eventually, it begins to smell. Really, really bad.
Chronic exposure of β-cells to triacylglycerol or fatty acids either in vitro or in vivo decreases β-cell capacity to respond to an acute increase in glucose levels (57,58). This concept is far from new (59,60), but the observations of what happens during reversal of diabetes provide a new perspective. β-Cells avidly import fatty acids through the CD36 transporter (24,61) and respond to increased fatty acid supply by storing the excess as triacylglycerol (62). The cellular process of insulin secretion in response to an increase in glucose supply depends on ATP generation by glucose oxidation. However, in the context of an oversupply of fatty acids, such chronic nutrient surfeit prevents further increases in ATP production. Increased fatty acid availability inhibits both pyruvate cycling, which is normally increased during an acute increase in glucose availability, and pyruvate dehydrogenase activity, the major rate-limiting enzyme of glucose oxidation (63). Fatty acids have been shown to inhibit β-cell proliferation in vitro by induction of the cell cycle inhibitors p16 and p18, and this effect is magnified by increased glucose concentration (64). This antiproliferative effect is specifically prevented by small interfering RNA knockdown of the inhibitors. In the Zucker diabetic fatty rat, a genetic model of spontaneous type 2 diabetes, the onset of hyperglycemia is preceded by a rapid increase in pancreatic fat (58). It is particularly noteworthy that the onset of diabetes in this genetic model is completely preventable by restriction of food intake (65), illustrating the interaction between genetic susceptibility and environmental factors.
In discussing self management with the person with diabetes I focus on how healthy lifestyle behaviors can change the treatment plan. Introducing healthy lifestyle behaviors by providing consistent and predictable meals, daily activity, healthy coping and consistent medication management can improve overall glucose control and may change the overall treatment plan for managing diabetes.
An aromatic herb that is used commonly to add flavor and aroma to meats and soups, Rosemary also helps normalize blood sugar levels naturally. It promotes weight loss as well, which is a double boon for many diabetics who struggle with weight issues. A research conducted in Jordan to study the effects of rosemary on lipid profile in diabetic rats proved that rosemary has no significant influence on serum glucose level and lipid profile of normal rats. But when rosemary extract was administered to diabetic rats for 4 weeks, their blood sugar levels reduced by 20%, cholesterol levels by 22%, triglyceride levels by 24%, and LDL by 27% while HDL increased by 18% respectively. The study was published in African Journal of Plant Science Vol. 6 in 2012.
Chromium plays a vital role in binding to and activating the insulin receptor on body cells, reducing insulin resistance. Supplemental chromium has been shown to lower blood sugar levels, lipids, A1C, and insulin in diabetic patients. It can also help decrease one’s appetite, particularly for sweets. A dosage from 200 mcg to 2,000 mcg a day is safe. Higher doses are unnecessary and can cause acute kidney failure.

Greek clover is an annual herb with aromatic seeds having medicinal properties. It is also known as fenugreek, and is largely used in curry. Greek clover has properties to lower down the levels of glucose in the body, which, in turn, controls diabetes. Also, when given in changeable doses of 25 gm to 100 gm on a daily basis, it was found to diminish reactive hyperglycemia in diabetic patients. Furthermore, levels of glucose, serum cholesterol, and triglycerides were also appreciably reduced. Alternatively, one can just stir two teaspoons of Greek clover seeds in powder form in warm milk and consume on a regular basis; it will control the levels of blood sugar and keep diabetes at bay. In case one does not want to have the powder in milk, seeds can be eaten wholly, too.

The twin cycle hypothesis of the etiology of type 2 diabetes. During long-term intake of more calories than are expended each day, any excess carbohydrate must undergo de novo lipogenesis, which particularly promotes fat accumulation in the liver. Because insulin stimulates de novo lipogenesis, individuals with a degree of insulin resistance (determined by family or lifestyle factors) will accumulate liver fat more readily than others because of higher plasma insulin levels. In turn, the increased liver fat will cause relative resistance to insulin suppression of hepatic glucose production. Over many years, a modest increase in fasting plasma glucose level will stimulate increased basal insulin secretion rates to maintain euglycemia. The consequent hyperinsulinemia will further increase the conversion of excess calories to liver fat. A cycle of hyperinsulinemia and blunted suppression of hepatic glucose production becomes established. Fatty liver leads to increased export of VLDL triacylglycerol (85), which will increase fat delivery to all tissues, including the islets. This process is further stimulated by elevated plasma glucose levels (85). Excess fatty acid availability in the pancreatic islet would be expected to impair the acute insulin secretion in response to ingested food, and at a certain level of fatty acid exposure, postprandial hyperglycemia will supervene. The hyperglycemia will further increase insulin secretion rates, with consequent enhancement of hepatic lipogenesis, spinning the liver cycle faster and driving the pancreas cycle. Eventually, the fatty acid and glucose inhibitory effects on the islets reach a trigger level that leads to a relatively sudden onset of clinical diabetes. Figure adapted with permission from Taylor (98).
Cinnamon’s effectiveness as a treatment for diabetes has not been established. A prescription drug as ineffective as cinnamon likely wouldn’t pass FDA muster. Existing drug treatments for diabetes, on the other hand, are cheap, effective, and generally well tolerated. Compared to drug therapy, we don’t know if cinnamon can reduce the risk of mortality due to diabetes, or the progression to any of the other serious outcomes of diabetes.   For my patients that insist on trying cinnamon, I’d caution them of the risks, and reinforce that cinnamon is no alternative for lifestyle changes and medication if necessary. It may be natural, sure, but that doesn’t mean it’s either safe or effective.

Type 2 diabetes develops when the body cannot use insulin properly or make enough insulin, so the body cannot properly use or store glucose (a form of sugar) and sugar backs up into the bloodstream, raising blood sugar levels. In the United States, some 8.9 percent of adults 20 and older have been found to have diabetes, and health officials estimate that another 3.5 percent have undiagnosed diabetes.
Bitter in taste, neem is beneficial in treating diabetes. Studies have proved that incorporating Indian lilac can maintain blood sugar levels stimulating insulin activity without hindrance. Although natural sources do not contain adverse effects, it is still suggested to consult with your endocrinologist in case constant high glucose content in the bloodstream.
Jump up ^ Qaseem A, Vijan S, Snow V, Cross JT, Weiss KB, Owens DK; Vijan; Snow; Cross; Weiss; Owens; Clinical Efficacy Assessment Subcommittee of the American College of Physicians (September 2007). "Glycemic control and type 2 diabetes mellitus: the optimal hemoglobin A1c targets. A guidance statement from the American College of Physicians". Annals of Internal Medicine. 147 (6): 417–22. doi:10.7326/0003-4819-147-6-200709180-00012. PMID 17876024. Retrieved 19 July 2008.
Natural Food Series is a part of Blackcedar Media Limited. Information on this website is for education purpose only and not a prescription. We encourage you to talk to your healthcare providers (doctor, registered dietitian, pharmacist, etc.) for health problems. Any mention in this website of a specific product or service, or recommendation, does not represent an endorsement of that product, or service, or expert advice. This website uses cookies to ensure you get the best experience. By using our website you agree to our use of cookies. Learn more
Beware of claims that seem too good to be true. Look for scientific-based sources of information. The National Diabetes Information Clearinghouse collects resource information for the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) Reference Collection, a service of the National Institutes of Health. To learn more about alternative therapies for diabetes treatment, contact the National Center for Complementary and Alternative Medicine Clearinghouse.
Besides going raw and eliminating sugar out of your life, you must switch to raw milk or its alternatives. In the book, The Devil in the Milk, Dr. Kevin Woodford explains how the type of milk we drink, directly reflects of the high incidence of many diseases, including diabetes and cancers. There are many substitutes available from almond milk to oat milk. They are extremely healthy and easy to make.
Although a close relationship exists among raised liver fat levels, insulin resistance, and raised liver enzyme levels (52), high levels of liver fat are not inevitably associated with hepatic insulin resistance. This is analogous to the discordance observed in the muscle of trained athletes in whom raised intramyocellular triacylglycerol is associated with high insulin sensitivity (53). This relationship is also seen in muscle of mice overexpressing the enzyme DGAT-1, which rapidly esterifies diacylglycerol to metabolically inert triacylglycerol (54). In both circumstances, raised intracellular triacylglycerol stores coexist with normal insulin sensitivity. When a variant of PNPLA3 was described as determining increased hepatic fat levels, it appeared that a major factor underlying nonalcoholic fatty liver disease and insulin resistance was identified (55). However, this relatively rare genetic variant is not associated with hepatic insulin resistance (56). Because the responsible G allele of PNPLA3 is believed to code for a lipase that is ineffective in triacylglycerol hydrolysis, it appears that diacylglycerol and fatty acids are sequestered as inert triacylglycerol, preventing any inhibitory effect on insulin signaling.
Called ALA for short, this vitamin-like substance neutralizes many types of free radicals. A build-up of free radicals, caused in part by high blood sugar, can lead to nerve damage and other problems. ALA may also help muscle cells take up blood sugar. In a German study, a team of scientists had 40 adults take either an ALA supplement or a placebo. At the end of the four-week study, the ALA group had improved their insulin sensitivity 27 percent. The placebo group showed no improvement. Other studies have shown a decrease in nerve pain, numbness, and burning.

HoneyColony and its materials are not intended to treat, diagnose, cure or prevent any disease. All material on HoneyColony is provided for educational purposes only. Always seek the advice of your physician or another qualified healthcare provider for any questions you have regarding a medical condition, and before undertaking any diet, exercise or other health related program.
Every single part of the body just starts to rot. This is precisely why type 2 diabetes, unlike virtually any other disease, affects every part of our body. Every organ suffers the long term effects of the excessive sugar load. Your eyes rot — and you go blind. Your kidneys rot — and you need dialysis. You heart rots — and you get heart attacks and heart failure. Your brain rots — and you get Alzheimers disease. Your liver rots — and you get fatty liver disease. Your legs rot — and you get diabetic foot ulcers. Your nerves rot — and you get diabetic neuropathy. No part of your body is spared.
A wide scatter of absolute levels of pancreas triacylglycerol has been reported, with a tendency for higher levels in people with diabetes (57). This large population study showed overlap between diabetic and weight-matched control groups. These findings were also observed in a more recent smaller study that used a more precise method (21). Why would one person have normal β-cell function with a pancreas fat level of, for example, 8%, whereas another has type 2 diabetes with a pancreas fat level of 5%? There must be varying degrees of liposusceptibility of the metabolic organs, and this has been demonstrated in relation to ethnic differences (72). If the fat is simply not available to the body, then the susceptibility of the pancreas will not be tested, whereas if the individual acquires excess fat stores, then β-cell failure may or may not develop depending on degree of liposusceptibility. In any group of people with type 2 diabetes, simple inspection reveals that diabetes develops in some with a body mass index (BMI) in the normal or overweight range, whereas others have a very high BMI. The pathophysiologic changes in insulin secretion and insulin sensitivity are not different in obese and normal weight people (73), and the upswing in population rates of type 2 diabetes relates to a right shift in the whole BMI distribution. Hence, the person with a BMI of 24 and type 2 diabetes would in a previous era have had a BMI of 21 and no diabetes. It is clear that individual susceptibility factors determine the onset of the condition, and both genetic and epigenetic factors may contribute. Given that diabetes cannot occur without loss of acute insulin response to food, it can be postulated that this failure of acute insulin secretion could relate to both accumulation of fat and susceptibility to the adverse effect of excess fat in the pancreas.
With that in mind, let’s take a look at some of the best herbs that lower blood sugar, along with a few spices thrown in, to give you a more comprehensive list. Please note that while we normally do not use animal studies to support any dietary supplement, several herbs like garlic and ginger are considered ‘food’ and so, are used traditionally by cultures across the world in their daily diet for their additional medical benefits. So human lab research studies on these are not always available. You can check all available studies under ‘References’ at the end of the article.

Second, hypoglycemia can affect a person’s thinking process, coordination, and state of consciousness.[45][46] This disruption in brain functioning is called neuroglycopenia. Studies have demonstrated that the effects of neuroglycopenia impair driving ability.[45][47] A study involving people with type 1 diabetes found that individuals reporting two or more hypoglycemia-related driving mishaps differ physiologically and behaviorally from their counterparts who report no such mishaps.[48] For example, during hypoglycemia, drivers who had two or more mishaps reported fewer warning symptoms, their driving was more impaired, and their body released less epinephrine (a hormone that helps raise BG). Additionally, individuals with a history of hypoglycemia-related driving mishaps appear to use sugar at a faster rate[49] and are relatively slower at processing information.[50] These findings indicate that although anyone with type 1 diabetes may be at some risk of experiencing disruptive hypoglycemia while driving, there is a subgroup of type 1 drivers who are more vulnerable to such events.
Carbohydrates break down into glucose in the small intestine which is then absorbed into the bloodstream. Spices like Cayenne pepper stimulate glucose absorption from the small intestine, according to a Hungarian study published in the March 18, 2006 issue of the “European Journal of Pharmacology”. Add a bit to cayenne pepper to your home-cooked meals to stabilize your blood sugar levels naturally. The entire pepper family – including bell peppers, chilli peppers, and cayenne are known to help fight inflammation. That is why they are prized in several Asian culinary traditions. Use Cayenne wisely to get its anti-inflammatory benefits as well.
The term diabetes includes several different metabolic disorders that all, if left untreated, result in abnormally high concentration of a sugar called glucose in the blood. Diabetes mellitus type 1 results when the pancreas no longer produces significant amounts of the hormone insulin, usually owing to the autoimmune destruction of the insulin-producing beta cells of the pancreas. Diabetes mellitus type 2, in contrast, is now thought to result from autoimmune attacks on the pancreas and/or insulin resistance. The pancreas of a person with type 2 diabetes may be producing normal or even abnormally large amounts of insulin. Other forms of diabetes mellitus, such as the various forms of maturity onset diabetes of the young, may represent some combination of insufficient insulin production and insulin resistance. Some degree of insulin resistance may also be present in a person with type 1 diabetes.

Every single part of the body just starts to rot. This is precisely why type 2 diabetes, unlike virtually any other disease, affects every part of our body. Every organ suffers the long term effects of the excessive sugar load. Your eyes rot — and you go blind. Your kidneys rot — and you need dialysis. You heart rots — and you get heart attacks and heart failure. Your brain rots — and you get Alzheimers disease. Your liver rots — and you get fatty liver disease. Your legs rot — and you get diabetic foot ulcers. Your nerves rot — and you get diabetic neuropathy. No part of your body is spared.


High blood sugar (hyperglycemia). Your blood sugar level can rise for many reasons, including eating too much, being sick or not taking enough glucose-lowering medication. Check your blood sugar level often, and watch for signs and symptoms of high blood sugar — frequent urination, increased thirst, dry mouth, blurred vision, fatigue and nausea. If you have hyperglycemia, you'll need to adjust your meal plan, medications or both.
×