Type 2 diabetes is a completely preventable and reversible condition, and with diet and lifestyle changes, you can greatly reduce your chances of getting the disease or reverse the condition if you’ve already been diagnosed. If you are one of the millions of Americans struggling with diabetes symptoms, begin the steps to reverse diabetes naturally today. With my diabetic diet plan, suggested supplements and increased physical activity, you can quickly regain your health and reverse diabetes the natural way.
Foods high in fiber: Research shows that 90 percent of the U.S. population doesn’t consume enough fiber on a daily basis. High-fiber foods help slow down glucose absorption, regulate your blood sugar levels and support detoxification. Aim to eat at least 30 grams of fiber per day, which can come from vegetables (like Brussels sprouts, peas and artichokes), avocados, berries, nuts and seeds, especially chia seeds and flaxseeds. (9)
At the start of the study, all of the patients had been taking two oral diabetes drugs for at least six months. But they still had poorly controlled diabetes based on blood tests showing so-called hemoglobin A1c levels, which reflect average blood sugar levels over about three months. Readings above 6.5 signal diabetes, and everyone in the study had readings of at least 7.
Katie Wells, CTNC, MCHC, Founder and CEO of Wellness Mama, has a background in research, journalism, and nutrition. As a mom of six, she turned to research and took health into her own hands to find answers to her health problems. WellnessMama.com is the culmination of her thousands of hours of research and all posts are medically reviewed and verified by the Wellness Mama research team. Katie is also the author of the bestselling books The Wellness Mama Cookbook and The Wellness Mama 5-Step Lifestyle Detox.

Carbohydrate Spike Test-On one day of your blood sugar readings (after at least 2-3 days of testing) eat a food high in simple carbs at your test meal (a potato, rice, etc) along with any vegetables, but in the absence of any fats or proteins. This will test your basic glucose reaction to high levels of glucose not mitigated by fat. Record these numbers as usual. Important note: if you usually eat a low-carbohydrate diet, this number might seem higher than it should be. This is because of decreased tolerance to carbohydrates and is not a cause for concern.
Eating right and exercising more often is good for everyone. But it's especially important for people with type 2 diabetes. When people put on too much body fat, it's because they're eating more calories than they use each day. The body stores that extra energy in fat cells. Over time, gaining pounds of extra fat can lead to obesity and diseases related to obesity, like type 2 diabetes.
Jump up ^ Farmer, A; Wade, A; French, DP; Goyder, E; Kinmonth, AL; Neil, A (2005). "The DiGEM trial protocol – a randomised controlled trial to determine the effect on glycaemic control of different strategies of blood glucose self-monitoring in people with type 2 diabetes ISRCTN47464659". BMC Family Practice. 6 (1): 25. doi:10.1186/1471-2296-6-25. PMC 1185530. PMID 15960852.
Capsaicin cream, a topical ointment made with cayenne, has been reported by some patients to help lower pain in the hands and feet from diabetic neuropathy. But people with loss of sensation in the hands or feet should use caution when using capsaicin, as they may not be able to fully feel any burning sensation. Check with your doctor if you are thinking of trying this product.

To prevent further diabetic complications as well as serious oral problems, diabetic persons must keep their blood sugar levels under control and have a proper oral hygiene. A study in the Journal of Periodontology found that poorly controlled type 2 diabetic patients are more likely to develop periodontal disease than well-controlled diabetics are.[58] At the same time, diabetic patients are recommended to have regular checkups with a dental care provider at least once in three to four months. Diabetics who receive good dental care and have good insulin control typically have a better chance at avoiding gum disease to help prevent tooth loss.[61]

When the insulin levels are unable to keep up with the increasing resistance, blood sugars rise and your doctor diagnoses you with type 2 diabetes and starts you on a pill, such as metformin. But metformin does not get rid of the sugar. Instead, it simply takes the sugar from the blood and rams it back into the liver. The liver doesn’t want it either, so it ships it out to all the other organs – the kidneys, the nerves, the eyes, the heart. Much of this extra sugar will also just get turned into fat.

Following these five principles can significantly influence blood glucose levels. However, not everyone responds the same. Some people with have immediate low blood glucose levels. Others may experience a slow and steady improvement of glucose control. Some may have temporary high glucose levels. Our experience is that this is transient and most people will improve.
The only way to effectively reverse type 2 diabetes (or even pre-diabetes) is to deal with the underlying cause – Insulin Resistance. Trying to address the blood sugar levels (with medication) without addressing the insulin levels is treating the symptoms, not treating the root cause. It is similar to using a bucket to remove water from an overflowing sink rather than actually turning off the tap!
If the rapid changes in metabolism following bariatric surgery are a consequence of the sudden change in calorie balance, the defects in both insulin secretion and hepatic insulin sensitivity of type 2 diabetes should be correctable by change in diet alone. To test this hypothesis, a group of people with type 2 diabetes were studied before and during a 600 kcal/day diet (21). Within 7 days, liver fat decreased by 30%, becoming similar to that of the control group, and hepatic insulin sensitivity normalized (Fig. 2). The close association between liver fat content and hepatic glucose production had previously been established (20,22,23). Plasma glucose normalized by day 7 of the diet.
“I have many ways to help patients manage diabetes, but it’s very hard to reverse,” says Dr. Rita Louard, director of the Clinical Diabetes Program at Montefiore Health System in Bronx, New York. Still, some diabetes experts will use the word “reverse” when talking about this topic, Louard says, acknowledging the controversy that exists when discussing diabetes reversal.
Genetic factors do play a role in any disease, but I put this factor last for a reason. Genetic predisposition to a given disease will increase the chances of getting the disease, but not in a vacuum. People with a strong predisposition to liver disease manage to avoid it, and some with a family history of heart disease remain heart-attack free. Even studies among identical twins show that in most cases, twins will get the same diseases, even in different environments, but sometimes they don’t. This means there are other factors involved (see above).
Every single part of the body just starts to rot. This is precisely why type 2 diabetes, unlike virtually any other disease, affects every part of our body. Every organ suffers the long term effects of the excessive sugar load. Your eyes rot — and you go blind. Your kidneys rot — and you need dialysis. You heart rots — and you get heart attacks and heart failure. Your brain rots — and you get Alzheimers disease. Your liver rots — and you get fatty liver disease. Your legs rot — and you get diabetic foot ulcers. Your nerves rot — and you get diabetic neuropathy. No part of your body is spared.
The study wasn’t a controlled experiment designed to prove whether or how treatment intensification might directly improve blood sugar. Researchers also lacked data to explain why doctors or patients might have decided against a change in therapy. And the study didn’t show whether failure to switch treatment regimens resulted in diabetes complications.
Type 2 diabetes is a chronic disease (meaning there isn’t a “cure”) and tends to be progressive. The longer that someone has been living with Type 2 diabetes the less insulin their beta cells may be producing. This doesn’t mean that lifestyle modification is irrelevant–but does mean that individuals should work on accepting their Type 2 diabetes diagnosis so they can focus on managing their diabetes in the best way possible.
Exercise– Even the mainstream medical community recognizes the advantage of exercise, as it increases the muscles ability to use insulin and over time can help fix insulin resistance. All exercise isn’t created equal though and fortunately, smaller amounts of high intensity exercise have been shown to have a better effect on insulin levels (and weight loss) than an hour of daily moderate cardio. According to the Healthy Skeptic: “A pair of studies done at McMaster University found that “6-minutes of pure, hard exercise once a week could be just as effective as an hour of daily moderate activity“, according to the June 6, 2005 CNN article reporting on the study.” I recommend high intensity exercise anyway for its various health advantages, and it is great for diabetes control. too.
Gestational diabetes develops during pregnancy because hormones interfere with how the body uses insulin. When the pancreas can’t keep up with the insulin demand and blood glucose levels get too high, the result is gestational diabetes. About 2-7 percent of expectant mothers develop gestational diabetes during their pregnancy. Learn more about diabetes and pregnancy.
The first thing to understand when it comes to treating diabetes is your blood glucose level, which is just what it sounds like — the amount of glucose in the blood. Glucose is a sugar that comes from the foods we eat and also is formed and stored inside the body. It's the main source of energy for the cells of the body, and is carried to them through the blood. Glucose gets into the cells with the help of the hormone insulin.
In order to reverse diabetes naturally, remove foods like refined sugar, grains, conventional cow’s milk, alcohol, GMO foods and hydrogenated oils from your diet; incorporate healthy foods like foods high in fiber, chromium, magnesium, healthy fats and clean protein, along with foods with low glycemic loads; take supplements for diabetes; follow my diabetic eating plan; and exercise to balance blood sugar.

1. Refined sugar - We all know that sugar, until it is in its most natural form, is bad for people suffering from diabetes. When consumed, refined sugar spikes the blood sugar rapidly. Sometimes even the natural form like honey can cause a sudden spike in the blood sugar levels. So, it’s better to avoid refined sugar by all means if you are a diabetic.

Any food that you ingest is processed and metabolized by the body. Food is broken down into the various building blocks the body needs, and what cannot be metabolized or used is processed and removed by the liver. Protein and fats are used for muscle and tissue regeneration and other processes in the body. Carbohydrates are typically a fast fuel for the body, but when more are eaten that the body immediately needs, they must be stored. A simple explanation from a previous post:
A wide scatter of absolute levels of pancreas triacylglycerol has been reported, with a tendency for higher levels in people with diabetes (57). This large population study showed overlap between diabetic and weight-matched control groups. These findings were also observed in a more recent smaller study that used a more precise method (21). Why would one person have normal β-cell function with a pancreas fat level of, for example, 8%, whereas another has type 2 diabetes with a pancreas fat level of 5%? There must be varying degrees of liposusceptibility of the metabolic organs, and this has been demonstrated in relation to ethnic differences (72). If the fat is simply not available to the body, then the susceptibility of the pancreas will not be tested, whereas if the individual acquires excess fat stores, then β-cell failure may or may not develop depending on degree of liposusceptibility. In any group of people with type 2 diabetes, simple inspection reveals that diabetes develops in some with a body mass index (BMI) in the normal or overweight range, whereas others have a very high BMI. The pathophysiologic changes in insulin secretion and insulin sensitivity are not different in obese and normal weight people (73), and the upswing in population rates of type 2 diabetes relates to a right shift in the whole BMI distribution. Hence, the person with a BMI of 24 and type 2 diabetes would in a previous era have had a BMI of 21 and no diabetes. It is clear that individual susceptibility factors determine the onset of the condition, and both genetic and epigenetic factors may contribute. Given that diabetes cannot occur without loss of acute insulin response to food, it can be postulated that this failure of acute insulin secretion could relate to both accumulation of fat and susceptibility to the adverse effect of excess fat in the pancreas.
Storage of liver fat can only occur when daily calorie intake exceeds expenditure. Sucrose overfeeding for 3 weeks has been shown to cause a 30% increase in liver fat content (37). The associated metabolic stress on hepatocytes was reflected by a simultaneous 30% rise in serum alanine aminotransferase (ALT) levels, and both liver fat and serum ALT returned to normal levels during a subsequent hypocaloric diet. Superimposed upon a positive calorie balance, the extent of portal vein hyperinsulinemia determines how rapidly conversion of excess sugars to fatty acid occurs in the liver. In groups of both obese and nonobese subjects, it was found that those with higher plasma insulin levels have markedly increased rates of hepatic de novo lipogenesis (2,38,39). Conversely, in type 1 diabetes the relatively low insulin concentration in the portal vein (as a consequence of insulin injection into subcutaneous tissue) is associated with subnormal liver fat content (40). Initiation of subcutaneous insulin therapy in type 2 diabetes brings about a decrease in portal insulin delivery by suppression of pancreatic insulin secretion and, hence, a decrease in liver fat (41). Hypocaloric diet (42), physical activity (43), or thiazolidinedione use (23,44) each reduces insulin secretion and decreases liver fat content. Newly synthesized triacylglycerol in the liver will be either oxidized, exported, or stored as hepatic triacylglycerol. Because transport of fatty acid into mitochondria for oxidation is inhibited by the malonyl-CoA produced during de novo lipogenesis, newly synthesized triacylglycerol is preferentially directed toward storage or export. Hence, hepatic fat content and plasma VLDL triacylglycerol levels are increased.
Every single part of the body just starts to rot. This is precisely why type 2 diabetes, unlike virtually any other disease, affects every part of our body. Every organ suffers the long term effects of the excessive sugar load. Your eyes rot – and you go blind. Your kidneys rot – and you need dialysis. You heart rots – and you get heart attacks and heart failure. Your brain rots – and you get Alzheimers disease. Your liver rots – and you get fatty liver disease. Your legs rot – and you get diabetic foot ulcers. Your nerves rot – and you get diabetic neuropathy. No part of your body is spared.
Every single part of the body just starts to rot. This is precisely why type 2 diabetes, unlike virtually any other disease, affects every part of our body. Every organ suffers the long term effects of the excessive sugar load. Your eyes rot — and you go blind. Your kidneys rot — and you need dialysis. You heart rots — and you get heart attacks and heart failure. Your brain rots — and you get Alzheimers disease. Your liver rots — and you get fatty liver disease. Your legs rot — and you get diabetic foot ulcers. Your nerves rot — and you get diabetic neuropathy. No part of your body is spared.
All carbohydrates – to some degree at least – will raise your blood insulin levels. That is why I consider type 2 diabetes a form of “carbohydrate intolerance”. Protein can also raise levels but to a much lesser degree. The only macronutrient that keeps your insulin levels and, therefore, your blood sugar stable is FAT! Therefore, if you are trying to reduce insulin levels, you need to reduce your amount of certain carbohydrates and replace them instead with healthy, natural fats.
To help patients learn to manage their diabetes successfully, the Diabetes Treatment Center at Desert Springs Hospital offers educational classes, as well as individualized appointments, (in both English and Spanish) on topics such as behavior change, goal setting, healthy eating concepts, carbohydrate counting, dining out, label reading, lipid, medication, stress and sick day management, benefits of exercise, prevention of complications and foot care. Special Gestational Diabetes Education classes are also available for women diagnosed with diabetes during pregnancy. Learn more about the Diabetes Care Education Series >
Some people who have type 2 diabetes can achieve their target blood sugar levels with diet and exercise alone, but many also need diabetes medications or insulin therapy. The decision about which medications are best depends on many factors, including your blood sugar level and any other health problems you have. Your doctor might even combine drugs from different classes to help you control your blood sugar in several different ways.
Clearly separate from the characteristic lack of acute insulin secretion in response to increase in glucose supply is the matter of total mass of β-cells. The former determines the immediate metabolic response to eating, whereas the latter places a long-term limitation on total possible insulin response. Histological studies of the pancreas in type 2 diabetes consistently show an ∼50% reduction in number of β-cells compared with normal subjects (66). β-Cell loss appears to increase as duration of diabetes increases (67). The process is likely to be regulated by apoptosis, a mechanism known to be increased by chronic exposure to increased fatty acid metabolites (68). Ceramides, which are synthesized directly from fatty acids, are likely mediators of the lipid effects on apoptosis (10,69). In light of new knowledge about β-cell apoptosis and rates of turnover during adult life, it is conceivable that removal of adverse factors could result in restoration of normal β-cell number, even late in the disease (66,70). Plasticity of lineage and transdifferentiation of human adult β-cells could also be relevant, and the evidence for this has recently been reviewed (71). β-Cell number following reversal of type 2 diabetes remains to be examined, but overall, it is clear that at least a critical mass of β-cells is not permanently damaged but merely metabolically inhibited.
These are a relatively new class of drugs used to treat type 2 diabetes. They are oral medications that work by blocking the kidneys' reabsorption of glucose, leading to increased glucose excretion and reduction of blood sugar levels. The US FDA approved the SGLT2 inhibitors canagliflozin (Invokana) in March 2013 and dapagliflozin (Farxiga) in January 2014.
×