Whole-body insulin resistance is the earliest predictor of type 2 diabetes onset, and this mainly reflects muscle insulin resistance (26). However, careful separation of the contributions of muscle and liver have shown that early improvement in control of fasting plasma glucose level is associated only with improvement in liver insulin sensitivity (20,21). It is clear that the resumption of normal or near-normal diurnal blood glucose control does not require improvement in muscle insulin sensitivity. Although this finding may at first appear surprising, it is supported by a wide range of earlier observations. Mice totally lacking in skeletal muscle insulin receptors do not develop diabetes (27). Humans who have the PPP1R3A genetic variant of muscle glycogen synthase cannot store glycogen in muscle after meals but are not necessarily hyperglycemic (28). Many normoglycemic individuals maintain normal blood glucose levels with a degree of muscle insulin resistance identical to those with type 2 diabetes (29).
These dietary recommendations have made high carb, low-fat foods a staple of the American diet. “Healthy” foods like fruit-on-the-bottom yogurt, sugary protein shakes and low-fat processed grains flooded the market. The standard American diet began to include more sugary drinks and sodas, as well as more processed grains. Since all carbohydrates (even complex carbs) are broken down into sugar in the body, these dietary recommendations meant that the average blood sugar of Americans began to rise – and the diabetes epidemic began to grow.
As the fats decreased inside the liver and the pancreas, some individuals also experienced improved functioning of their pancreatic beta cells, which store and release insulin, a hormone that helps control blood sugar levels. The likelihood of regaining normal glucose control depends on the ability of the beta cells to recover, the study authors say.
Carbohydrate Spike Test-On one day of your blood sugar readings (after at least 2-3 days of testing) eat a food high in simple carbs at your test meal (a potato, rice, etc) along with any vegetables, but in the absence of any fats or proteins. This will test your basic glucose reaction to high levels of glucose not mitigated by fat. Record these numbers as usual. Important note: if you usually eat a low-carbohydrate diet, this number might seem higher than it should be. This is because of decreased tolerance to carbohydrates and is not a cause for concern.
All of the above contributing factors don’t usually happen by themselves. Since the body functions as a whole, a problem in one area will usually correlate to problems in others. A combination of the factors above can be the catalyst for a full blown case of diabetes (or a lot of other diseases). While researchers often look at a single variable when trying to discover a cure for a disease, often the best approach is one that addresses the body as a whole. As with all diseases, the best cure is good prevention, but certain measures can help reverse disease once it has occurred.
I’ve done this for years and I do it each time I’m pregnant in place of the glucose test. It is a cheap and easy way to keep insulin levels in check and see how your body responds to certain foods. While I can offer general advice on the amount of carbohydrates that should be consumed, at home glucose monitoring allows you to know exactly what your body will and won’t handle.
Studies conducted in the United States[43] and Europe[44] showed that drivers with type 1 diabetes had twice as many collisions as their non-diabetic spouses, demonstrating the increased risk of driving collisions in the type 1 diabetes population. Diabetes can compromise driving safety in several ways. First, long-term complications of diabetes can interfere with the safe operation of a vehicle. For example, diabetic retinopathy (loss of peripheral vision or visual acuity), or peripheral neuropathy (loss of feeling in the feet) can impair a driver’s ability to read street signs, control the speed of the vehicle, apply appropriate pressure to the brakes, etc.

Eating a balanced diet is vital for people who have diabetes, so work with your doctor or dietitian to set up a menu plan. If you have type 1 diabetes, the timing of your insulin dosage is determined by activity and diet. When you eat and how much you eat are just as important as what you eat. Usually, doctors recommend three small meals and three to four snacks every day to maintain the proper balance between sugar and insulin in the blood.


Conventional treatment for Type 1 Diabetes generally involves insulin supplementation in the form of injections. Because Type 1 is an autoimmune disorder, it can affect both children and adults, and it’s not uncommon for diabetics to be dependent on lifelong insulin treatments. Type 2, on the other hand, is largely a product of poor lifestyle choices or little access to healthy foods, and is more likely to occur later in life. However, in recent years, there has been an alarming rise in Type 2 Diabetes cases among children and adolescents, which largely stems from an overwhelming obesity issue.
A 2012 review of ginseng in animals and human beings found that not only does ginseng reduce insulin resistance, it also lowers HbA1C levels. It’s been used in traditional Chinese medicine for centuries as one of the most potent herbs for blood sugar control. Indian ginseng, also called Ashwagandha, offers fantastic all round benefits. Scientists are also researching the connection between diabetes and Alzhiemer’s. Panax Ginseng is a type of ginseng that is able to help with both diabetes and Alzheimer’s.
This section deals only with approaches for curing the underlying condition of diabetes type 1, by enabling the body to endogenously, in vivo, produce insulin in response to the level of blood glucose. It does not cover other approaches, such as, for instance, closed-loop integrated glucometer/insulin pump products, which could potentially increase the quality-of-life for some who have diabetes type 1, and may by some be termed "artificial pancreas".
Genetic factors do play a role in any disease, but I put this factor last for a reason. Genetic predisposition to a given disease will increase the chances of getting the disease, but not in a vacuum. People with a strong predisposition to liver disease manage to avoid it, and some with a family history of heart disease remain heart-attack free. Even studies among identical twins show that in most cases, twins will get the same diseases, even in different environments, but sometimes they don’t. This means there are other factors involved (see above).
Research is constantly giving us more information on diabetes and the various factors that contribute to its steady rise in society over the last few decades. Since most theories on diabetes are just that- theories, research for yourself and figure out your best way or preventing or reversing diabetes. I’ve compiled the best of my own research above, but do your own, too! At the least, please consider making some positive changes to help keep yourself disease free (or become disease free).

Levels which are significantly above or below this range are problematic and can in some cases be dangerous. A level of <3.8 mmol/L (<70 mg/dL) is usually described as a hypoglycemic attack (low blood sugar). Most diabetics know when they are going to "go hypo" and usually are able to eat some food or drink something sweet to raise levels. A patient who is hyperglycemic (high glucose) can also become temporarily hypoglycemic, under certain conditions (e.g. not eating regularly, or after strenuous exercise, followed by fatigue). Intensive efforts to achieve blood sugar levels close to normal have been shown to triple the risk of the most severe form of hypoglycemia, in which the patient requires assistance from by-standers in order to treat the episode.[8] In the United States, there were annually 48,500 hospitalizations for diabetic hypoglycemia and 13,100 for diabetic hypoglycemia resulting in coma in the period 1989 to 1991, before intensive blood sugar control was as widely recommended as today.[9] One study found that hospital admissions for diabetic hypoglycemia increased by 50% from 1990–1993 to 1997–2000, as strict blood sugar control efforts became more common.[10] Among intensively controlled type 1 diabetics, 55% of episodes of severe hypoglycemia occur during sleep, and 6% of all deaths in diabetics under the age of 40 are from nocturnal hypoglycemia in the so-called 'dead-in-bed syndrome,' while National Institute of Health statistics show that 2% to 4% of all deaths in diabetics are from hypoglycemia.[11] In children and adolescents following intensive blood sugar control, 21% of hypoglycemic episodes occurred without explanation.[12] In addition to the deaths caused by diabetic hypoglycemia, periods of severe low blood sugar can also cause permanent brain damage.[13] Although diabetic nerve disease is usually associated with hyperglycemia, hypoglycemia as well can initiate or worsen neuropathy in diabetics intensively struggling to reduce their hyperglycemia.[14]

In general, “remission” in diabetes means a person’s blood sugar levels remain normal. While some refer to this as a “cure,” diabetes is not a “one and done,” disease. That is, it could always return if the patient regains the weight or returns to unhealthy habits. In 2009, a group of diabetes experts wrote that “remission” is a term used when a person has normal blood sugar levels for one year without therapy or surgery.


Yuri Elkaim is one of the world’s most trusted health and fitness experts. A former pro soccer player turned NYT bestselling author of The All-Day Energy Diet and The All-Day Fat Burning Diet, his clear, science-backed advice has transformed the lives of more than 500,000 men and women and he’s on a mission to help 100 million people by 2040. Read his inspiring story, “From Soccer to Bed to No Hair on My Head” that started it all.
It is also known as insulin-dependent diabetes mellitus (IDDM) and results from body's inability to produce insulin. Usually, it occurs in childhood or adolescence, but can surface up at any age. In this, the patient needs to take insulin injections on regular intervals (generally daily) in order to absorb glucose in the body. Type 1 diabetes mellitus is also referred to as juvenile diabetes, at times.
Ideally, insulin should be administered in a manner that mimics the natural pattern of insulin secretion by a healthy pancreas. However, the complex pattern of natural insulin secretion is difficult to duplicate. Still, adequate blood glucose control can be achieved with careful attention to diet, regular exercise, home blood glucose monitoring, and multiple insulin injections throughout the day..
×