The twin cycle hypothesis of the etiology of type 2 diabetes. During long-term intake of more calories than are expended each day, any excess carbohydrate must undergo de novo lipogenesis, which particularly promotes fat accumulation in the liver. Because insulin stimulates de novo lipogenesis, individuals with a degree of insulin resistance (determined by family or lifestyle factors) will accumulate liver fat more readily than others because of higher plasma insulin levels. In turn, the increased liver fat will cause relative resistance to insulin suppression of hepatic glucose production. Over many years, a modest increase in fasting plasma glucose level will stimulate increased basal insulin secretion rates to maintain euglycemia. The consequent hyperinsulinemia will further increase the conversion of excess calories to liver fat. A cycle of hyperinsulinemia and blunted suppression of hepatic glucose production becomes established. Fatty liver leads to increased export of VLDL triacylglycerol (85), which will increase fat delivery to all tissues, including the islets. This process is further stimulated by elevated plasma glucose levels (85). Excess fatty acid availability in the pancreatic islet would be expected to impair the acute insulin secretion in response to ingested food, and at a certain level of fatty acid exposure, postprandial hyperglycemia will supervene. The hyperglycemia will further increase insulin secretion rates, with consequent enhancement of hepatic lipogenesis, spinning the liver cycle faster and driving the pancreas cycle. Eventually, the fatty acid and glucose inhibitory effects on the islets reach a trigger level that leads to a relatively sudden onset of clinical diabetes. Figure adapted with permission from Taylor (98).

An insulin pump is composed of a reservoir similar to that of an insulin cartridge, a battery-operated pump, and a computer chip that allows the user to control the exact amount of insulin being delivered. The pump is attached to a thin plastic tube (an infusion set) that has a cannula (like a needle but soft) at the end through which insulin passes. This cannula is inserted under the skin, usually on the abdomen.. The pump continuously delivers insulin, 24 hours a day. The amount of insulin is programmed and is administered at a constant rate (basal rate). Often, the amount of insulin needed over the course of 24 hours varies, depending on factors like exercise, activity level, and sleep. The insulin pump allows the user to program many different basal rates to allow for variations in lifestyle. The user can also program the pump to deliver additional insulin during meals, covering the excess demands for insulin caused by eating carbohydrates.
A further danger of insulin treatment is that while diabetic microangiopathy is usually explained as the result of hyperglycemia, studies in rats indicate that the higher than normal level of insulin diabetics inject to control their hyperglycemia may itself promote small blood vessel disease.[14] While there is no clear evidence that controlling hyperglycemia reduces diabetic macrovascular and cardiovascular disease, there are indications that intensive efforts to normalize blood glucose levels may worsen cardiovascular and cause diabetic mortality.[42]

Implementing integrative and functional medical nutrition therapy, I helped the patient understand that she could reverse the trajectory she was on by making lifestyle changes—and that’s what she did. We engaged in shared decision making in our ongoing nutrition consultations. Over the course of one year, her physiology and health status changed for the better. Her A1c dropped from 7.2% to 5.6%, and she no longer required medications. She continues to adhere to her new lifestyle program and is confident she’ll remain free of a diabetes diagnosis.


Diabetic patients must get professional dental cleanings every six months. In cases when dental surgery is needed, it is necessary to take some special precautions such as adjusting diabetes medication or taking antibiotics to prevent infection. Looking for early signs of gum disease (redness, swelling, bleeding gums) and informing the dentist about them is also helpful in preventing further complications. Quitting smoking is recommended to avoid serious diabetes complications and oral diseases.

The diabetes looks better, since you can only see the blood sugars. Doctors can congratulate themselves on a illusion of a job well done, even as the patient gets continually sicker. Patients require ever increasing doses of medications and yet still suffer with heart attacks, congestive heart failure, strokes, kidney failure, amputations and blindness. “Oh well” the doctor tells himself, “It’s a chronic, progressive disease”.
Artificial Intelligence researcher Dr. Cynthia Marling, of the Ohio University Russ College of Engineering and Technology, in collaboration with the Appalachian Rural Health Institute Diabetes Center, is developing a case based reasoning system to aid in diabetes management. The goal of the project is to provide automated intelligent decision support to diabetes patients and their professional care providers by interpreting the ever-increasing quantities of data provided by current diabetes management technology and translating it into better care without time consuming manual effort on the part of an endocrinologist or diabetologist.[56] This type of Artificial Intelligence-based treatment shows some promise with initial testing of a prototype system producing best practice treatment advice which anaylizing physicians deemed to have some degree of benefit over 70% of the time and advice of neutral benefit another nearly 25% of the time.[5]
The diabetes market is expected to reach a massively big €86Bn by 2025 combining both type 1 (€32Bn) and type 2 (€54Bn) treatments, and we can expect all sort of revolutionary technologies to come forward and claim their market share. Researchers are already speculating about microchips that can diagnose diabetes type 1 before the symptoms appear or nanorobots traveling in the bloodstream while they measure glucose and deliver insulin.

It isn’t just keeping blood sugar levels down through insulin control that helps diabetes, but fixing the actual problem causing the diabetes. Addressing just one aspect of the problem (blood sugar or insulin) ignores all the other factors like poor diet, toxins, stress, gut problems, immune issues etc. Instead, this single focuses approach can contribute to the problem, making insulin resistance worse and eventually leading to insulin dependent diabetes when the pancreas shuts down completely. Many doctors and nutrition experts recommend the typical 6-11 servings of complex carbs from whole grain sources daily, suggesting that the fiber helps mitigate insulin response. As I have shown before, 6-11 servings of carbohydrates a day is bad for anyone, but is gasoline on a fire to anyone with an impaired insulin response.
The bottom line is that diabetes can be bad news—but this doesn’t have to be the case. Interventions can prevent or delay the disease in people with prediabetes. The Diabetes Prevention Program (DPP), a large study of people at high risk of diabetes, has established a prevention plan that’s both feasible and cost-effective. The DPP showed that weight loss and increased physical activity reduced the development of type 2 diabetes by 58% during a three-year period.

Exenatide (Byetta) was the first drug of the GLP-1 agonist group. It originated from an interesting source, the saliva of the Gila monster. Scientists observed that this small lizard could go a long time without eating. They discovered a substance in its saliva that slowed stomach emptying, thus making the lizard feel fuller for a longer time. This substance resembled the hormone GLP-1.

×