The twin cycle hypothesis of the etiology of type 2 diabetes. During long-term intake of more calories than are expended each day, any excess carbohydrate must undergo de novo lipogenesis, which particularly promotes fat accumulation in the liver. Because insulin stimulates de novo lipogenesis, individuals with a degree of insulin resistance (determined by family or lifestyle factors) will accumulate liver fat more readily than others because of higher plasma insulin levels. In turn, the increased liver fat will cause relative resistance to insulin suppression of hepatic glucose production. Over many years, a modest increase in fasting plasma glucose level will stimulate increased basal insulin secretion rates to maintain euglycemia. The consequent hyperinsulinemia will further increase the conversion of excess calories to liver fat. A cycle of hyperinsulinemia and blunted suppression of hepatic glucose production becomes established. Fatty liver leads to increased export of VLDL triacylglycerol (85), which will increase fat delivery to all tissues, including the islets. This process is further stimulated by elevated plasma glucose levels (85). Excess fatty acid availability in the pancreatic islet would be expected to impair the acute insulin secretion in response to ingested food, and at a certain level of fatty acid exposure, postprandial hyperglycemia will supervene. The hyperglycemia will further increase insulin secretion rates, with consequent enhancement of hepatic lipogenesis, spinning the liver cycle faster and driving the pancreas cycle. Eventually, the fatty acid and glucose inhibitory effects on the islets reach a trigger level that leads to a relatively sudden onset of clinical diabetes. Figure adapted with permission from Taylor (98).
Articles and information on this website may only be copied, reprinted, or redistributed with written permission (but please ask, we like to give written permission!) The purpose of this Blog is to encourage the free exchange of ideas. The entire contents of this website is based upon the opinions of Dave Asprey, unless otherwise noted. Individual articles are based upon the opinions of the respective authors, who may retain copyright as marked. The information on this website is not intended to replace a one-on-one relationship with a qualified health care professional and is not intended as medical advice. It is intended as a sharing of knowledge and information from the personal research and experience of Dave Asprey and the community. We will attempt to keep all objectionable messages off this site; however, it is impossible to review all messages immediately. All messages expressed on The Bulletproof Forum or the Blog, including comments posted to Blog entries, represent the views of the author exclusively and we are not responsible for the content of any message.

Whole-body insulin resistance is the earliest predictor of type 2 diabetes onset, and this mainly reflects muscle insulin resistance (26). However, careful separation of the contributions of muscle and liver have shown that early improvement in control of fasting plasma glucose level is associated only with improvement in liver insulin sensitivity (20,21). It is clear that the resumption of normal or near-normal diurnal blood glucose control does not require improvement in muscle insulin sensitivity. Although this finding may at first appear surprising, it is supported by a wide range of earlier observations. Mice totally lacking in skeletal muscle insulin receptors do not develop diabetes (27). Humans who have the PPP1R3A genetic variant of muscle glycogen synthase cannot store glycogen in muscle after meals but are not necessarily hyperglycemic (28). Many normoglycemic individuals maintain normal blood glucose levels with a degree of muscle insulin resistance identical to those with type 2 diabetes (29).

And when I talk about reducing certain carbohydrates, I mainly mean reducing your intake of  refined carbohydrates such as pasta, rice and bread. Non starchy vegetables (such as broccoli, cabbage and cauliflower) are fine and can be eaten in abundance. Many fruits are packed with carbohydrates, so if you’re trying to reduce your carb intake, try and limit your intake to low-carb fruit, such as rhubarb, watermelon, berries, peaches and blackberries.


I would love to hear what you have to say about a person that is 5’5″ and 110 lbs. My blood sugar was was in the 90s to 112 when fasting. My A1C was 5.7. So I started to eat less carbs but my A1C stayed elevated. I was then diagnosed with Glucose intolerance and prescribed Tradjenta 5mg. I also read several books on the subject and came across your TEDTalk video. I then adjusted my low carb eating and on the meds since 2017. I still need the meds to maintain my A1C at 5.2.
John’s naturopath, Susan DeLaney, ND, RN, from The Wellness Alliance in Carrboro, North Carolina, considers diabetes to be reversed when an individual is no longer dependent on medication to maintain blood glucose levels within a fairly normal range. Kathie Madonna Swift, MS, RD, LDN, owner of Swift Nutrition and author of The Inside Tract: Your Good Gut Guide to Great Digestive Health, describes reversal of diabetes as “restoring function and bringing the body back into glycemic balance.”
Before making any fiber recommendations, Dean has her patients tested for “pancreatic insufficiency.” She believes people with pancreatic insufficiency should be given digestive enzymes along with fiber, “otherwise the fiber will just bloat them up, and they’ll be quite unhappy,” she says. Dean uses a glucomannan fiber supplement for her patients with type 2 diabetes.
Although a close relationship exists among raised liver fat levels, insulin resistance, and raised liver enzyme levels (52), high levels of liver fat are not inevitably associated with hepatic insulin resistance. This is analogous to the discordance observed in the muscle of trained athletes in whom raised intramyocellular triacylglycerol is associated with high insulin sensitivity (53). This relationship is also seen in muscle of mice overexpressing the enzyme DGAT-1, which rapidly esterifies diacylglycerol to metabolically inert triacylglycerol (54). In both circumstances, raised intracellular triacylglycerol stores coexist with normal insulin sensitivity. When a variant of PNPLA3 was described as determining increased hepatic fat levels, it appeared that a major factor underlying nonalcoholic fatty liver disease and insulin resistance was identified (55). However, this relatively rare genetic variant is not associated with hepatic insulin resistance (56). Because the responsible G allele of PNPLA3 is believed to code for a lipase that is ineffective in triacylglycerol hydrolysis, it appears that diacylglycerol and fatty acids are sequestered as inert triacylglycerol, preventing any inhibitory effect on insulin signaling.
John’s naturopath, Susan DeLaney, ND, RN, from The Wellness Alliance in Carrboro, North Carolina, considers diabetes to be reversed when an individual is no longer dependent on medication to maintain blood glucose levels within a fairly normal range. Kathie Madonna Swift, MS, RD, LDN, owner of Swift Nutrition and author of The Inside Tract: Your Good Gut Guide to Great Digestive Health, describes reversal of diabetes as “restoring function and bringing the body back into glycemic balance.”
Every single part of the body just starts to rot. This is precisely why type 2 diabetes, unlike virtually any other disease, affects every part of our body. Every organ suffers the long term effects of the excessive sugar load. Your eyes rot – and you go blind. Your kidneys rot – and you need dialysis. You heart rots – and you get heart attacks and heart failure. Your brain rots – and you get Alzheimers disease. Your liver rots – and you get fatty liver disease. Your legs rot – and you get diabetic foot ulcers. Your nerves rot – and you get diabetic neuropathy. No part of your body is spared.

^ Jump up to: a b Safren, S.A., Gonzalez, J.S., Wexler, D.J., Psaros, C., Delahanty, L.M., Blashill, A.J., Margolina, A.I., & Cagliero, E. (2013). "A randomized controlled trial of cognitive behavioral therapy for adherence and depression (CBT-AD) in patients with uncontrolled type 2 diabetes". Diabetes Care. 37 (3): 625–33. doi:10.2337/dc13-0816. PMC 3931377. PMID 24170758.

Diabetes is an illness related to elevated blood sugar levels. When you stop releasing and responding to normal amounts of insulin after eating foods with carbohydrates, sugar and fats, you have diabetes. Insulin, a hormone that’s broken down and transported to cells to be used as energy, is released by the pancreas to help with the storage of sugar and fats. But people with diabetes don’t respond to insulin properly, which causes high blood sugar levels and diabetes symptoms.
Self-testing is clearly important in type I diabetes where the use of insulin therapy risks episodes of hypoglycaemia and home-testing allows for adjustment of dosage on each administration.[22] However its benefit in type 2 diabetes is more controversial as there is much more variation in severity of type 2 cases.[23] It has been suggested that some type 2 patients might do as well with home urine-testing alone.[24] The best use of home blood-sugar monitoring is being researched.[25]
Diabetic persons must increase their awareness about oral infections as they have a double impact on health. Firstly, people with diabetes are more likely to develop periodontal disease, which causes increased blood sugar levels, often leading to diabetes complications. Severe periodontal disease can increase blood sugar, contributing to increased periods of time when the body functions with a high blood sugar. This puts diabetics at increased risk for diabetic complications.[58]
Keep your immunizations up to date. High blood sugar can weaken your immune system. Get a flu shot every year, and your doctor will likely recommend the pneumonia vaccine, as well. The Centers for Disease Control and Prevention (CDC) also recommends the hepatitis B vaccination if you haven't previously received this vaccine and you're an adult age 19 to 59 with type 1 or type 2 diabetes. The CDC advises vaccination as soon as possible after diagnosis with type 1 or type 2 diabetes. If you are age 60 or older, have diabetes and haven't previously received the vaccine, talk to your doctor about whether it's right for you.
Well, I don’t know much about VCRs, but I do know about type 2 diabetes. I can write an entire book about obesity (oh, wait, I did that already), or fasting (oh, wait, coming up) or type 2 diabetes (next up for 2018). But many of you will not want to go through the entire instruction manual. So this is the quick start guide for reversing your type 2 diabetes.
As diabetes is a prime risk factor for cardiovascular disease, controlling other risk factors which may give rise to secondary conditions, as well as the diabetes itself, is one of the facets of diabetes management. Checking cholesterol, LDL, HDL and triglyceride levels may indicate hyperlipoproteinemia, which may warrant treatment with hypolipidemic drugs. Checking the blood pressure and keeping it within strict limits (using diet and antihypertensive treatment) protects against the retinal, renal and cardiovascular complications of diabetes. Regular follow-up by a podiatrist or other foot health specialists is encouraged to prevent the development of diabetic foot. Annual eye exams are suggested to monitor for progression of diabetic retinopathy.

Vitamin C may make up for low blood levels of insulin, which normally works to help cells absorb the vitamin. Proper amounts of vitamin C may help the body maintain a good cholesterol level and keep blood sugar levels under control. But too much can cause kidney stones and other problems. Check with your doctor to see if a vitamin C supplement is right for you.


Drugs of this class decrease the absorption of carbohydrates from the intestine. Before being absorbed into the bloodstream, enzymes in the small intestine must break down carbohydrates into smaller sugar particles, such as glucose. One of the enzymes involved in breaking down carbohydrates is called alpha-glucosidase. By inhibiting this enzyme, carbohydrates are not broken down as efficiently, and glucose absorption is delayed.
×