The primary issue requiring management is that of the glucose cycle. In this, glucose in the bloodstream is made available to cells in the body; a process dependent upon the twin cycles of glucose entering the bloodstream, and insulin allowing appropriate uptake into the body cells. Both aspects can require management. Another issue that ties along with the glucose cycle is getting a balanced amount of the glucose to the major organs so they are not affected negatively.
Since the body functions as a whole, it is logical that when one hormone or part of the endocrine system is suffering, the other would be affected as well. This is the reason behind the recent research linking high stress levels to diabetes and other health problems. Most people think of stress only in the mental context (as in, “I’ve got a million things to do, I’m running late and I don’t have time to get anything done… I’m so stressed”) but stress can be physical, psychological, emotional, or mental and can be triggered by many factors including:
Most of those foods are refined, processed starches and sugars. Lots of diets place people on a restricted plan that doesn’t allow the refined, processed starches and sugars, and people lose weight, regain good BG control and feel better. However, in most cases, the weight comes back and weight creeps up and BG begins rising again due to the inability to sustain many of these diets.
Late in the 19th century, sugar in the urine (glycosuria) was associated with diabetes. Various doctors studied the connection. Frederick Madison Allen studied diabetes in 1909–12, then published a large volume, Studies Concerning Glycosuria and Diabetes, (Boston, 1913). He invented a fasting treatment for diabetes called the Allen treatment for diabetes. His diet was an early attempt at managing diabetes.
When the insulin levels are unable to keep up with the increasing resistance, blood sugars rise and your doctor diagnoses you with type 2 diabetes and starts you on a pill, such as metformin. But metformin does not get rid of the sugar. Instead, it simply takes the sugar from the blood and rams it back into the liver. The liver doesn’t want it either, so it ships it out to all the other organs — the kidneys, the nerves, the eyes, the heart. Much of this extra sugar will also just get turned into fat.
Reversal of type 2 diabetes to normal metabolic control by either bariatric surgery or hypocaloric diet allows for the time sequence of underlying pathophysiologic mechanisms to be observed. In reverse order, the same mechanisms are likely to determine the events leading to the onset of hyperglycemia and permit insight into the etiology of type 2 diabetes. Within 7 days of instituting a substantial negative calorie balance by either dietary intervention or bariatric surgery, fasting plasma glucose levels can normalize. This rapid change relates to a substantial fall in liver fat content and return of normal hepatic insulin sensitivity. Over 8 weeks, first phase and maximal rates of insulin secretion steadily return to normal, and this change is in step with steadily decreasing pancreatic fat content. The difference in time course of these two processes is striking. Recent information on the intracellular effects of excess lipid intermediaries explains the likely biochemical basis, which simplifies both the basic understanding of the condition and the concepts used to determine appropriate management. Recent large, long-duration population studies on time course of plasma glucose and insulin secretion before the diagnosis of diabetes are consistent with this new understanding. Type 2 diabetes has long been regarded as inevitably progressive, requiring increasing numbers of oral hypoglycemic agents and eventually insulin, but it is now certain that the disease process can be halted with restoration of normal carbohydrate and fat metabolism. Type 2 diabetes can be understood as a potentially reversible metabolic state precipitated by the single cause of chronic excess intraorgan fat.
The accepted view has been that the β-cell dysfunction of established diabetes progresses inexorably (79,82,83), whereas insulin resistance can be modified at least to some extent. However, it is now clear that the β-cell defect, not solely hepatic insulin resistance, may be reversible by weight loss at least early in the course of type 2 diabetes (21,84). The low insulin sensitivity of muscle tissue does not change materially either during the onset of diabetes or during subsequent reversal. Overall, the information on the inhibitory effects of excess fat on β-cell function and apoptosis permits a new understanding of the etiology and time course of type 2 diabetes.
Maintaining normal blood sugar levels is necessary for the body’s overall health. Erratic blood sugar levels can affect the body’s ability to function normally and even lead to complications if left unchecked. Some herbs and spices found in nature do a tremendous job of naturally lowering blood sugar levels, making them a boon for diabetics and pre-diabetics. What’s more, being nature’s multi-taskers, herbs and spices also produce overall health benefits beyond just helping balance blood sugar.
HoneyColony and its materials are not intended to treat, diagnose, cure or prevent any disease. All material on HoneyColony is provided for educational purposes only. Always seek the advice of your physician or another qualified healthcare provider for any questions you have regarding a medical condition, and before undertaking any diet, exercise or other health related program.
Chinese medicine teaches us that we do not treat a patient based solely on a Western medical diagnosis, but, rather, based on the symptoms that present, and the health of the body as a whole system. There are several beneficial herbal formulas that have been developed to treat some of the general symptoms, but it is important to remember that not everyone will present symptoms in the same way, and treatment should be individualized to suit the specific needs of the patient.
The main goal of diabetes management is, as far as possible, to restore carbohydrate metabolism to a normal state. To achieve this goal, individuals with an absolute deficiency of insulin require insulin replacement therapy, which is given through injections or an insulin pump. Insulin resistance, in contrast, can be corrected by dietary modifications and exercise. Other goals of diabetes management are to prevent or treat the many complications that can result from the disease itself and from its treatment.
Eating right and exercising more often is good for everyone. But it's especially important for people with type 2 diabetes. When people put on too much body fat, it's because they're eating more calories than they use each day. The body stores that extra energy in fat cells. Over time, gaining pounds of extra fat can lead to obesity and diseases related to obesity, like type 2 diabetes.
When the insulin levels are unable to keep up with the increasing resistance, blood sugars rise and your doctor diagnoses you with type 2 diabetes and starts you on a pill, such as metformin. But metformin does not get rid of the sugar. Instead, it simply takes the sugar from the blood and rams it back into the liver. The liver doesn’t want it either, so it ships it out to all the other organs – the kidneys, the nerves, the eyes, the heart. Much of this extra sugar will also just get turned into fat.

Type 2 diabetes is a chronic disease (meaning there isn’t a “cure”) and tends to be progressive. The longer that someone has been living with Type 2 diabetes the less insulin their beta cells may be producing. This doesn’t mean that lifestyle modification is irrelevant–but does mean that individuals should work on accepting their Type 2 diabetes diagnosis so they can focus on managing their diabetes in the best way possible.
Diabetes can be very complicated, and the physician needs to have as much information as possible to help the patient establish an effective management plan. Physicians may often experience data overload resulting from hundreds of blood-glucose readings, insulin dosages and other health factors occurring between regular office visits which must be deciphered during a relatively brief visit with the patient to determine patterns and establish or modify a treatment plan.[5]
Robert Ferry Jr., MD, is a U.S. board-certified Pediatric Endocrinologist. After taking his baccalaureate degree from Yale College, receiving his doctoral degree and residency training in pediatrics at University of Texas Health Science Center at San Antonio (UTHSCSA), he completed fellowship training in pediatric endocrinology at The Children's Hospital of Philadelphia.
×