The men took a six-hour educational course on diabetes and intermittent fasting prior to fasting. For the experiment, one man fasted for 24 hours three days per week, and the other two alternated their fasting days throughout the week. On fast days, they ate one low-calorie meal in the evening, and drank low-cal beverages, such as water, coffee, tea, and broth. The authors encouraged participants to opt for low-carb on the eating days.
“Decreasing caloric intake for any reason brings with it a rapid improvement in glucose control,” said Dr. Robert Lash, the chairman of the Endocrine Society’s clinical affairs committee and a professor of internal medicine at the University of Michigan. “What’s exciting here is that the improvements in glucose control persisted when the participants went back to eating a diet with a normal number of calories.”

“This is a radical change in our understanding of Type 2 diabetes,” said Dr. Roy Taylor, a professor at Newcastle University in England and the study’s senior author. “If we can get across the message that ‘yes, this is a reversible disease — that you will have no more diabetes medications, no more sitting in doctors’ rooms, no more excess health charges’ — that is enormously motivating.”
Clearly separate from the characteristic lack of acute insulin secretion in response to increase in glucose supply is the matter of total mass of β-cells. The former determines the immediate metabolic response to eating, whereas the latter places a long-term limitation on total possible insulin response. Histological studies of the pancreas in type 2 diabetes consistently show an ∼50% reduction in number of β-cells compared with normal subjects (66). β-Cell loss appears to increase as duration of diabetes increases (67). The process is likely to be regulated by apoptosis, a mechanism known to be increased by chronic exposure to increased fatty acid metabolites (68). Ceramides, which are synthesized directly from fatty acids, are likely mediators of the lipid effects on apoptosis (10,69). In light of new knowledge about β-cell apoptosis and rates of turnover during adult life, it is conceivable that removal of adverse factors could result in restoration of normal β-cell number, even late in the disease (66,70). Plasticity of lineage and transdifferentiation of human adult β-cells could also be relevant, and the evidence for this has recently been reviewed (71). β-Cell number following reversal of type 2 diabetes remains to be examined, but overall, it is clear that at least a critical mass of β-cells is not permanently damaged but merely metabolically inhibited.
Keeping close tabs on your diet is a major way to help manage type 2 diabetes. A healthy diet for people with type 2 diabetes includes fresh or frozen fruit and vegetables, whole grains, beans, lean meats, and low-fat or fat-free dairy. Focus on eating fruit and non-starchy vegetables, like broccoli, carrots, and lettuce, and having smaller portions of starchy foods, meats, and dairy products. Be especially careful about loading up on foods that are high on the glycemic index (GI) and especially the glycemic load (GL), systems that rank foods according to how they affect glucose levels.
After two months under the care of the naturopath, John returned to his primary care doctor to discover that his hemoglobin A1c had dropped from 8.9% to 4.9%—a nondiabetic range. For eight months and counting, he’s been off all his diabetes medication. His last A1c reading was 5.1%. With the help of his naturopath, John seems to have reversed his diabetes.
Reduce Stress–  Stress raises cortisol and can lead to hormone imbalance, insulin issues and increases risk for certain types of disease. Work to reduce your sources of stress from lack of sleep, exposure to toxins, mental and emotional sources and poor diet. Getting quality sleep every night can help reduce stress hormone levels and is great for blood sugar.
“The problem is we don’t treat diabetes as a dietary problem; we treat it with a lot of drugs, and that never addresses the root problem of the diabetes,” says principal investigator Jason Fung, MD, a kidney specialist at Scarborough and Rouge Hospital in Toronto, Canada, and author of The Complete Guide to Fasting,and The Obesity Code, a 2016 book thought to help popularize intermittent fasting.

In addition, a strong partnership between the patient and the primary healthcare provider – general practitioner or internist – is an essential tool in the successful management of diabetes. Often the primary care doctor makes the initial diagnosis of diabetes and provides the basic tools to get the patient started on a management program. Regular appointments with the primary care physician and a certified diabetes educator are some of the best things a patient can do in the early weeks after a diagnosis of diabetes. Upon the diagnosis of diabetes, the primary care physician, specialist, or endocrinologist will conduct a full physical and medical examination. A thorough assessment covers topics such as:
Medications and insulin do nothing to slow down the progression of this organ damage, because they do not eliminate the toxic sugar load from our body. We’ve known this inconvenient fact since 2008. No less than 7 multinational, multi-centre, randomized controlled trials of tight blood glucose control with medications (ACCORD, ADVANCE, VADT, ORIGIN, TECOS, ELIXA, SAVOR) failed to demonstrate reductions in heart disease, the major killer of diabetic patients. We pretended that using medications to lower blood sugar makes people healthier. But it’s only been a lie. You can’t use drugs to cure a dietary disease.

Any form of carbohydrate is eventually broken down by the body into glucose, a simple form of sugar. While the body can use glucose for fuel, levels that exceed what  is needed are toxic to the body. In the long run, that whole wheat muffin, cup of millet, or bowl of oatmeal turns into the exact same thing as a cup of soda, a donut or a handful of candy.


Diabetes is a group of diseases characterized by elevated blood glucose levels due to defects in insulin secretion, insulin action, or both. According to the American Diabetes Association (ADA), type 2 diabetes usually begins with insulin resistance. For those people whose bodies resist insulin, the pancreas secretes extra insulin to maintain normal glucose levels. As the condition progresses, insulin production gradually decreases and eventually reaches a level of deficiency that can no longer maintain blood glucose in the normal range. But how type 2 diabetes presents and progresses can vary considerably, as noted by the ADA, and methods of treatment can vary from patient to patient.

Following these five principles can significantly influence blood glucose levels. However, not everyone responds the same. Some people with have immediate low blood glucose levels. Others may experience a slow and steady improvement of glucose control. Some may have temporary high glucose levels. Our experience is that this is transient and most people will improve.


Peripheral neuropathy is a problem with the functioning of the nerves outside of the spinal cord. Symptoms may include numbness, weakness, burning pain (especially at night), and loss of reflexes. Possible causes may include carpel tunnel syndrome, shingles, vitamin or nutritional deficiencies, and illnesses like diabetes, syphilis, AIDS, and kidney failure. Peripheral neuropathy is diagnosed with exams and tests. Treatment for the condition depends on the cause. Usually, the prognosis for peripheral neuropathy is good if the cause can be successfully treated or prevented.
The medical professionals at the Diabetes Treatment Center at Desert Springs Hospital Medical Center provide inpatient and outpatient evaluation, treatment and ongoing education for adults with Type 1 or Type 2 diabetes, as well as pre-diabetes conditions. The interdisciplinary team includes certified diabetes educators and nurses who work closely with patients' primary care physicians to work toward a common goal — to help patients lead longer, healthier lives.

Every single part of the body just starts to rot. This is precisely why type 2 diabetes, unlike virtually any other disease, affects every part of our body. Every organ suffers the long term effects of the excessive sugar load. Your eyes rot — and you go blind. Your kidneys rot — and you need dialysis. You heart rots — and you get heart attacks and heart failure. Your brain rots — and you get Alzheimers disease. Your liver rots — and you get fatty liver disease. Your legs rot — and you get diabetic foot ulcers. Your nerves rot — and you get diabetic neuropathy. No part of your body is spared.
Jump up ^ Farmer, A; Wade, A; French, DP; Goyder, E; Kinmonth, AL; Neil, A (2005). "The DiGEM trial protocol – a randomised controlled trial to determine the effect on glycaemic control of different strategies of blood glucose self-monitoring in people with type 2 diabetes ISRCTN47464659". BMC Family Practice. 6 (1): 25. doi:10.1186/1471-2296-6-25. PMC 1185530. PMID 15960852.
Elevated homocysteine levels in the blood called hyperhomocysteinemia, is a sign that the body isn't producing enough of the amino acid homocysteine. is a rare and serious condition that may be inherited (genetic). People with homocystinuria die at an early age. Symptoms of hyperhomocysteinemia include developmental delays, osteoporosis, blood clots, heart attack, heart disease, stroke, and visual abnormalities.
According to the Centers for Disease Control and Prevention (CDC), from 1980 through 2010, the number of American adults aged 18 and older with diagnosed diabetes more than tripled—soaring from 5.5 million to 20.7 million. Moreover, the diabetes epidemic shows no signs of slowing down, affecting 25.8 million people in 2011. Another 79 million adults have prediabetes, putting them at greater risk of developing type 2 diabetes down the road, according to the CDC.
Studies funded by the National Institutes of Health (NIH) have demonstrated that face-to-face training programs designed to help individuals with type 1 diabetes better anticipate, detect, and prevent extreme BG can reduce the occurrence of future hypoglycemia-related driving mishaps.[51][52][53] An internet-version of this training has also been shown to have significant beneficial results.[54] Additional NIH funded research to develop internet interventions specifically to help improve driving safety in drivers with type 1 diabetes is currently underway.[55]
Change in fasting plasma glucose (A), 2 h post-oral glucose tolerance test (B), and homeostasis model assessment (HOMA-B) insulin secretion (C) during the 16-year follow-up in the Whitehall II study. Of the 6,538 people studied, diabetes developed in 505. Time 0 was taken as the diagnosis of diabetes or as the end of follow-up for those remaining normoglycemic. Redrawn with permission from Tabák et al. (80).
Exenatide (Byetta) was the first drug of the GLP-1 agonist group. It originated from an interesting source, the saliva of the Gila monster. Scientists observed that this small lizard could go a long time without eating. They discovered a substance in its saliva that slowed stomach emptying, thus making the lizard feel fuller for a longer time. This substance resembled the hormone GLP-1.
×