Diabetes type 1 is caused by the destruction of enough beta cells to produce symptoms; these cells, which are found in the Islets of Langerhans in the pancreas, produce and secrete insulin, the single hormone responsible for allowing glucose to enter from the blood into cells (in addition to the hormone amylin, another hormone required for glucose homeostasis). Hence, the phrase "curing diabetes type 1" means "causing a maintenance or restoration of the endogenous ability of the body to produce insulin in response to the level of blood glucose" and cooperative operation with counterregulatory hormones.
Natural Food Series is a part of Blackcedar Media Limited. Information on this website is for education purpose only and not a prescription. We encourage you to talk to your healthcare providers (doctor, registered dietitian, pharmacist, etc.) for health problems. Any mention in this website of a specific product or service, or recommendation, does not represent an endorsement of that product, or service, or expert advice. This website uses cookies to ensure you get the best experience. By using our website you agree to our use of cookies. Learn more

Implementing integrative and functional medical nutrition therapy, I helped the patient understand that she could reverse the trajectory she was on by making lifestyle changes—and that’s what she did. We engaged in shared decision making in our ongoing nutrition consultations. Over the course of one year, her physiology and health status changed for the better. Her A1c dropped from 7.2% to 5.6%, and she no longer required medications. She continues to adhere to her new lifestyle program and is confident she’ll remain free of a diabetes diagnosis.
Elevated homocysteine levels in the blood called hyperhomocysteinemia, is a sign that the body isn't producing enough of the amino acid homocysteine. is a rare and serious condition that may be inherited (genetic). People with homocystinuria die at an early age. Symptoms of hyperhomocysteinemia include developmental delays, osteoporosis, blood clots, heart attack, heart disease, stroke, and visual abnormalities.
Refined sugar: Refined sugar rapidly spikes blood glucose, and soda, fruit juice and other sugary beverages are the worst culprits. These forms of sugar enter the bloodstream rapidly and can cause extreme elevations in blood glucose. (7) Even though natural sweeteners like raw honey and maple syrup are better options, they can still affect blood sugar levels, so only use these foods on occasion. Your best option is to switch to stevia, a natural sweetener that won’t have as much of an impact.
Beware of claims that seem too good to be true. Look for scientific-based sources of information. The National Diabetes Information Clearinghouse collects resource information for the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) Reference Collection, a service of the National Institutes of Health. To learn more about alternative therapies for diabetes treatment, contact the National Center for Complementary and Alternative Medicine Clearinghouse.
Called ALA for short, this vitamin-like substance neutralizes many types of free radicals. A build-up of free radicals, caused in part by high blood sugar, can lead to nerve damage and other problems. ALA may also help muscle cells take up blood sugar. In a German study, a team of scientists had 40 adults take either an ALA supplement or a placebo. At the end of the four-week study, the ALA group had improved their insulin sensitivity 27 percent. The placebo group showed no improvement. Other studies have shown a decrease in nerve pain, numbness, and burning.

The big news with the use of fig leaves is that they have anti-diabetic properties. The diabetic needs less insulin when on a treatment of using the fig leaf extract. The diabetic should take the extract with breakfast, first thing in the morning. An additional remedy is to boil the leaves of the fig in some freshly filtered waster and drink this as a tea. Read the whole article on fig leaves and diabetes:


A healthy balance of carbohydrates, proteins, and fats in your diet will help keep your blood glucose on target. How much of each will depend on many factors, including your weight and your personal preferences. Watching your carbohydrates -- knowing how much you need and how many you are eating -- is key to blood sugar control. If you are overweight, either a low-carbohydrate, low-fat/low calorie, or Mediterranean diet may help you get your weight to goal. No more than 7% of your diet should come from saturated fat, and you should try to avoid trans fats altogether.
Gene therapy can be used to turn duodenum cells and duodenum adult stem cells into beta cells which produce insulin and amylin naturally. By delivering beta cell DNA to the intestine cells in the duodenum, a few intestine cells will turn into beta cells, and subsequently adult stem cells will develop into beta cells. This makes the supply of beta cells in the duodenum self replenishing, and the beta cells will produce insulin in proportional response to carbohydrates consumed.[78]
Try to keep carbohydrate amounts stable across the day (some choose lower carbohydrate targets), stand more and sit less and include activities that increase the heart rate and also strength based activities most days across the week. Think about the amount of stress you experience to see how it is increasing your blood glucose levels. If you smoke – stop because it is speeding up the damage to your blood vessels. If you drink alcohol, limit how much you drink.
If your carb consumption is on the high side (once you add sugar into the mix, you’re most certainly on the high side), it’s stored as fat and you end up with insulin resistance or non-alcoholic fatty liver disease.[14] The reason behind it is that carbs metabolize into glucose, and limiting carbs helps your body control blood sugar more efficiently.[15][16] It improves overall blood sugar profiles, insulin sensitivity, and hemoglobin A1c, which is a diabetes marker.[17] Going low-carb is especially effective if you’re in the early stages when you do not yet need to administer insulin.[18]
Foods with a low glycemic load: The glycemic index of a food tells you about the blood glucose-raising potential of the food. Foods that have a high glycemic index are converted into sugar after being eaten more quickly than low glycemic foods. If you are fighting diabetes, stick to low glycemic foods like non-starchy vegetables, stone fruits and berries, nuts, seeds, avocados, coconut, organic meat, eggs, wild-caught fish, and raw pastured dairy.
If your carb consumption is on the high side (once you add sugar into the mix, you’re most certainly on the high side), it’s stored as fat and you end up with insulin resistance or non-alcoholic fatty liver disease.[14] The reason behind it is that carbs metabolize into glucose, and limiting carbs helps your body control blood sugar more efficiently.[15][16] It improves overall blood sugar profiles, insulin sensitivity, and hemoglobin A1c, which is a diabetes marker.[17] Going low-carb is especially effective if you’re in the early stages when you do not yet need to administer insulin.[18]
“The degree of carbohydrate restriction that we recommend to establish and then maintain nutritional ketosis depends upon individual factors such degree of insulin resistance (metabolic syndrome or type 2 diabetes?) and physical activity. These starting levels of carb restriction typically vary between 30 and 60 grams per day of total carbs. The best way to determine one’s carbohydrate tolerance is to directly measure blood ketones with a finger-stick glucometer that also accommodates ketone testing.

Every single part of the body just starts to rot. This is precisely why type 2 diabetes, unlike virtually any other disease, affects every part of our body. Every organ suffers the long term effects of the excessive sugar load. Your eyes rot — and you go blind. Your kidneys rot — and you need dialysis. You heart rots — and you get heart attacks and heart failure. Your brain rots — and you get Alzheimers disease. Your liver rots — and you get fatty liver disease. Your legs rot — and you get diabetic foot ulcers. Your nerves rot — and you get diabetic neuropathy. No part of your body is spared.


In the study, Fung and his team randomly recruited three men, ages 40 to 67, with type 2 diabetes, who also had high cholesterol and high blood pressure. At the start of the study, the authors recorded the participants’ vitals, including their A1C (a three-month average of their blood sugar levels), their fasting blood glucose levels, their waist circumference, and their weight. All three men were on insulin and oral medication.
Green tea contains the bioflavinoid epigallocatechin gallate (EGCG), which has been shown to be a safe and effective antioxidant. In a study in Japan, green tea was shown to reduce the risk for Type 2 Diabetes Mellitus onset. It has been shown to improve glucose tolerance in patients, and decrease blood sugar production and over-secretion in Type 2 Diabetes Mellitus  patients. Green tea has also been shown to have an effective anti-angiogenesis factor, that is, it reduces problematic overgrowth of blood vessels, which may have a significant effect on preventing diabetic retinopathy. It has also been shown to promote fat oxidation and thermogenesis. Last, green tea can provide antioxidant protection for the pancreas and the fatty liver. A good dose is 200 to 400 mg a day. It’s also beneficial to drink organic green tea.
Fasting is the simplest and fastest method to force your body to burn sugar for energy. Glucose in the blood is the most easily accessible source of energy for the body. Fasting is merely the flip side of eating – if you are not eating you are fasting. When you eat, your body stores food energy. When you fast, your body burns food energy. If you simply lengthen out your periods of fasting, you can burn off the stored sugar.
Storage of liver fat can only occur when daily calorie intake exceeds expenditure. Sucrose overfeeding for 3 weeks has been shown to cause a 30% increase in liver fat content (37). The associated metabolic stress on hepatocytes was reflected by a simultaneous 30% rise in serum alanine aminotransferase (ALT) levels, and both liver fat and serum ALT returned to normal levels during a subsequent hypocaloric diet. Superimposed upon a positive calorie balance, the extent of portal vein hyperinsulinemia determines how rapidly conversion of excess sugars to fatty acid occurs in the liver. In groups of both obese and nonobese subjects, it was found that those with higher plasma insulin levels have markedly increased rates of hepatic de novo lipogenesis (2,38,39). Conversely, in type 1 diabetes the relatively low insulin concentration in the portal vein (as a consequence of insulin injection into subcutaneous tissue) is associated with subnormal liver fat content (40). Initiation of subcutaneous insulin therapy in type 2 diabetes brings about a decrease in portal insulin delivery by suppression of pancreatic insulin secretion and, hence, a decrease in liver fat (41). Hypocaloric diet (42), physical activity (43), or thiazolidinedione use (23,44) each reduces insulin secretion and decreases liver fat content. Newly synthesized triacylglycerol in the liver will be either oxidized, exported, or stored as hepatic triacylglycerol. Because transport of fatty acid into mitochondria for oxidation is inhibited by the malonyl-CoA produced during de novo lipogenesis, newly synthesized triacylglycerol is preferentially directed toward storage or export. Hence, hepatic fat content and plasma VLDL triacylglycerol levels are increased.
The chart above gives averages. Follow your doctor’s advice on when and how to take your insulin. Your doctor might also recommend premixed insulin, which is a mix of two types of insulin. Some types of insulin cost more than others, so talk with your doctor about your options if you're concerned about cost. Read about financial help for diabetes care.
Fasting plasma glucose concentration depends entirely on the fasting rate of hepatic glucose production and, hence, on its sensitivity to suppression by insulin. Hepatic insulin sensitivity cannot be inferred from observed postprandial change in hepatic glycogen concentration because glucose transport into the hepatocyte is not rate limiting, unlike in muscle, and hyperglycemia itself drives the process of glycogen synthesis irrespective of insulin action. Indeed, postprandial glycogen storage in liver has been shown to be moderately impaired in type 2 diabetes (50) compared with the marked impairment in skeletal muscle (51).
“Our findings suggest that even if you have had type 2 diabetes for six years, putting the disease into remission is feasible”, says Prof Michael Lean from the University of Glasgow who co-led the study. “In contrast to other approaches, we focus on the need for long-term maintenance of weight loss through diet and exercise and encourage flexibility to optimise individual results.”

Type 2 diabetes is a condition that is characterised by chronically elevated blood sugar levels. However, the main cause as well as the driver for this condition is something called Insulin Resistance. When you eat certain foods, particularly refined carbohydrates, that food is converted to sugar inside your body. Your body’s way of dealing with this sugar is to produce a hormone called insulin. Insulin moves the sugar inside your cells so that it can be used for energy. Sounds great, right?

All carbohydrates – to some degree at least – will raise your blood insulin levels. That is why I consider type 2 diabetes a form of “carbohydrate intolerance”. Protein can also raise levels but to a much lesser degree. The only macronutrient that keeps your insulin levels and, therefore, your blood sugar stable is FAT! Therefore, if you are trying to reduce insulin levels, you need to reduce your amount of certain carbohydrates and replace them instead with healthy, natural fats.


Recently[when?] it has been suggested that a type of gastric bypass surgery may normalize blood glucose levels in 80–100% of severely obese patients with diabetes. The precise causal mechanisms are being intensively researched; its results may not simply be attributable to weight loss, as the improvement in blood sugars seems to precede any change in body mass. This approach may become a treatment for some people with type 2 diabetes, but has not yet been studied in prospective clinical trials.[83] This surgery may have the additional benefit of reducing the death rate from all causes by up to 40% in severely obese people.[84] A small number of normal to moderately obese patients with type 2 diabetes have successfully undergone similar operations.[85][86]
” 200 consecutive pts, aged 51-86, M:F ratio 3/2, with known vascular risk factors of HTN, DM, Hypercholesterolemia, hx of MI, Stent, CABG, were enrolled in a dietary program, which emphasizes large amts of leafy green vegetables, olive oil, radical reduction of grain, legumes, nightshades, and fruits; and generous amts of grassfed animal proteins, emphasizing Shellfish and avoiding commercial poultry (Diet Evolution). All pts were instructed to take 2-4,000 mg of high DHA fish oil, 200mg of Grape Seed Extract, and 50 mg of Pycnogenol per day. All pts had Endothelial Reactivity (ER) using PAT before and after a 5-minute arm occlusion using the EndoPAT 2000 (Itamar, Israel) at baseline and at 6 months.
Although chromium does have an effect on insulin and on glucose metabolism, there is no evidence that taking chromium supplements can help in the treatment of diabetes. But chromium is found in many healthy foods, such as green vegetables, nuts, and grains. Studies have suggested that biotin, also called vitamin H, when used with chromium, may improve glucose metabolism in people with diabetes. But no studies have shown that biotin by itself is helpful.

Patients with type 1 diabetes mellitus require direct injection of insulin as their bodies cannot produce enough (or even any) insulin. As of 2010, there is no other clinically available form of insulin administration other than injection for patients with type 1: injection can be done by insulin pump, by jet injector, or any of several forms of hypodermic needle. Non-injective methods of insulin administration have been unattainable as the insulin protein breaks down in the digestive tract. There are several insulin application mechanisms under experimental development as of 2004, including a capsule that passes to the liver and delivers insulin into the bloodstream.[39] There have also been proposed vaccines for type I using glutamic acid decarboxylase (GAD), but these are currently not being tested by the pharmaceutical companies that have sublicensed the patents to them.


The new research ties in with recent thinking among experts about what happens when type 2 diabetes develops, says Domenico Accili, MD, chief of endocrinology at Columbia University Vagelos College of Physicians and Surgeons. "We have been talking for some time, that in diabetes, primarily type 2, the insulin-producing [beta] cell is not dead but simply inactive," he says. "If you put patients with diabetes on a diet, you can do marvels with their beta cells."
Use of a "Diabetes Coach" is becoming an increasingly popular way to manage diabetes. A Diabetes Coach is usually a Certified diabetes educator (CDE) who is trained to help people in all aspects of caring for their diabetes. The CDE can advise the patient on diet, medications, proper use of insulin injections and pumps, exercise, and other ways to manage diabetes while living a healthy and active lifestyle. CDEs can be found locally or by contacting a company which provides personalized diabetes care using CDEs. Diabetes Coaches can speak to a patient on a pay-per-call basis or via a monthly plan.

Khodneva, Y., Shalev, A., Frank, S. J., Carson, A. P., & Safford, M. M. (2016, May). Calcium channel blocker use is associated with lower fasting serum glucose among adults with diabetes from the REGARDS study. Diabetes Research and Clinical Practice, 115, 115-121. Retrieved from http://www.diabetesresearchclinicalpractice.com/article/S0168-8227(16)00070-X/abstract


Insulin is a hormone that helps glucose get where it needs to go. When your body senses that you’ve eaten something, your pancreas produces insulin to help your cells absorb sugar. If you didn’t have insulin, your cells wouldn’t receive their glucose fuel, and your body would sense sugar in your bloodstream and eventually store it as fat because your cells didn’t use it.
Currently, one goal for diabetics is to avoid or minimize chronic diabetic complications, as well as to avoid acute problems of hyperglycemia or hypoglycemia. Adequate control of diabetes leads to lower risk of complications associated with unmonitored diabetes including kidney failure (requiring dialysis or transplant), blindness, heart disease and limb amputation. The most prevalent form of medication is hypoglycemic treatment through either oral hypoglycemics and/or insulin therapy. There is emerging evidence that full-blown diabetes mellitus type 2 can be evaded in those with only mildly impaired glucose tolerance.[38]

Regular blood testing, especially in type 1 diabetics, is helpful to keep adequate control of glucose levels and to reduce the chance of long term side effects of the disease. There are many (at least 20+) different types of blood monitoring devices available on the market today; not every meter suits all patients and it is a specific matter of choice for the patient, in consultation with a physician or other experienced professional, to find a meter that they personally find comfortable to use. The principle of the devices is virtually the same: a small blood sample is collected and measured. In one type of meter, the electrochemical, a small blood sample is produced by the patient using a lancet (a sterile pointed needle). The blood droplet is usually collected at the bottom of a test strip, while the other end is inserted in the glucose meter. This test strip contains various chemicals so that when the blood is applied, a small electrical charge is created between two contacts. This charge will vary depending on the glucose levels within the blood. In older glucose meters, the drop of blood is placed on top of a strip. A chemical reaction occurs and the strip changes color. The meter then measures the color of the strip optically.

Although the relationship between magnesiumand diabetes has been studied for decades, we still don't fully understand it. Low magnesium may worsen blood sugar control in type 2 diabetes. Scientists say that it interrupts insulin secretion in the pancreas and builds insulin resistance in the body's tissues. And evidence suggests that a magnesium deficiency may contribute to some diabetes complications. People who get more magnesium in their diet (by eating whole grains, nuts, and green leafy vegetables) have a lower risk of type 2 diabetes.
Eating right and exercising more often is good for everyone. But it's especially important for people with type 2 diabetes. When people put on too much body fat, it's because they're eating more calories than they use each day. The body stores that extra energy in fat cells. Over time, gaining pounds of extra fat can lead to obesity and diseases related to obesity, like type 2 diabetes.
Robert Ferry Jr., MD, is a U.S. board-certified Pediatric Endocrinologist. After taking his baccalaureate degree from Yale College, receiving his doctoral degree and residency training in pediatrics at University of Texas Health Science Center at San Antonio (UTHSCSA), he completed fellowship training in pediatric endocrinology at The Children's Hospital of Philadelphia.
×