There is no prescribed diet plan for diabetes and no single “diabetes diet”. Eating plans are tailored to fit each individual's needs, schedules, and eating habits. Each diabetes diet plan must be balanced with the intake of insulin and other diabetes medications. In general, the principles of a healthy diabetes diet are the same for everyone. Consumption of various foods in a healthy diet includes whole grains, fruits, non-fat dairy products, beans, lean meats, vegetarian substitutes, poultry, or fish.

1. Avoid toxins as much as possible: There is no doubt that we live in a polluted world, and it is next to impossible to avoid all toxins, however, recent research suggests that environmental toxins such as pesticides in our food and drinking water can be factors in causing or worsening Type 1 Diabetes. To lessen the amount of toxins that enter the body, try to buy “green” cleaners, organic fruits and vegetables, and dairy that is from organic or grass-fed cows. Although these items may be a bit more expensive, the health benefits are well-worth the higher price tag.


Practitioners agree that nutrition is the cornerstone of diabetes management, and that a range of nutrition intervention strategies can be used to meet the metabolic goals and individual preferences of the person with diabetes. However, there are significant differences in the approach and methodologies used by alternative and conventional practitioners to manage the disease. One difference is in terminology. When is remission really remission?
Magnesium is a mineral found naturally in foods such as green leafy vegetables, nuts, seeds, and whole grains and in nutritional supplements. Magnesium is needed for more than 300 biochemical reactions. It helps regulate blood sugar levels and is needed for normal muscle and nerve function, heart rhythm, immune function, blood pressure, and for bone health.
We live in a world where prescription medicine is getting more and more expensive as well as controversial. Alternative medicine is gaining momentum and with good reason! The same is true for treatments for diabetes type 2. You have therapies that can reverse diabetes through lifestyle and diet changes, natural supplements that can help stabilize blood sugar levels, and also herbs that lower blood sugar. Not only are these alternative therapies safer, but they are also easier on your pocket, on your body and mind.
As a bonus, stress relief may help you sleep better, which is important because studies show that not getting enough sleep can worsen type 2 diabetes. Sleeping less than six hours a night has also been found to contribute to impaired glucose tolerance, a condition that often precedes type 2 diabetes. In fact, a review published in 2015 in Diabetes Care analyzed 10 studies that involved more than 18,000 participants combined and found the lowest risk of type 2 diabetes in the group of participants that slept seven to eight hours per day. That’s the minimum recommended amount of sleep for most adults, according to the National Sleep Foundation.
Mechanism of interaction between excess amounts of fatty acids, diacylglycerol, and ceramide and insulin action within the hepatocyte. Diacylglycerol activates PKCε and inhibits activation of IRS-1 by the insulin receptor. Ceramides cause sequestration of Akt2 by PKCζ and inhibit insulin control of gluconeogenesis. These mechanisms have recently been reviewed (99). FFA, free-fatty acid; TG, triacylglycerol.
When the insulin levels are unable to keep up with the increasing resistance, blood sugars rise and your doctor diagnoses you with type 2 diabetes and starts you on a pill, such as metformin. But metformin does not get rid of the sugar. Instead, it simply takes the sugar from the blood and rams it back into the liver. The liver doesn’t want it either, so it ships it out to all the other organs – the kidneys, the nerves, the eyes, the heart. Much of this extra sugar will also just get turned into fat.
Exercise– Even the mainstream medical community recognizes the advantage of exercise, as it increases the muscles ability to use insulin and over time can help fix insulin resistance. All exercise isn’t created equal though and fortunately, smaller amounts of high intensity exercise have been shown to have a better effect on insulin levels (and weight loss) than an hour of daily moderate cardio. According to the Healthy Skeptic: “A pair of studies done at McMaster University found that “6-minutes of pure, hard exercise once a week could be just as effective as an hour of daily moderate activity“, according to the June 6, 2005 CNN article reporting on the study.” I recommend high intensity exercise anyway for its various health advantages, and it is great for diabetes control. too.
An insulin pump is a small machine that gives you small, steady doses of insulin throughout the day. You wear one type of pump outside your body on a belt or in a pocket or pouch. The insulin pump connects to a small plastic tube and a very small needle. You insert the needle under your skin and it stays in place for several days. Insulin then pumps from the machine through the tube into your body 24 hours a day. You also can give yourself doses of insulin through the pump at mealtimes. Another type of pump has no tubes and attaches directly to your skin, such as a self-adhesive pod.
Anti-diabetic effect of a leaf extract from Gymnema sylvestre in non-insulin-dependent diabetes mellitus patients - https://www.ncbi.nlm.nih.gov/pubmed?term=Baskaran%20K%20et%20al.%20Antidiabetic%20effect%20of%20a%20leaf%20extract%20from%20gymnema%20sylvestre%20in%20non-insulin-dependent%20diabetes%20mellitus%20patients Possible regeneration of the islets of langerhans in streptozotocin-diabetic rats given gymnema sylvestre leaf extracts - http://www.sciencedirect.com/science/article/pii/0378874190901064 Effects of a cinnamon extract on plasma glucose, HbA1c, and serum lipids in diabetes mellitus type 2 - http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2362.2006.01629.x/full Effectiveness of Cinnamon for Lowering Hemoglobin A1C in Patients with Type 2 Diabetes: A Randomized, Controlled Trial - http://www.jabfm.org/content/22/5/507.short Cloves protect the heart, liver and lens of diabetic rats - http://www.sciencedirect.com/science/article/pii/S0308814610003870 Cloves improve glucose, cholesterol and triglycerides of people with type 2 diabetes mellitus - http://www.fasebj.org/content/20/5/A990.3.short Effects of rosemary on lipid profile in diabetic rats - http://www.academicjournals.org/article/article1380120780_Aljamal%20et%20al.pdf Inhibition of Advanced Glycation End-Product Formation by Origanum majorana L. In Vitro and in Streptozotocin-Induced Diabetic Rats - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3447365/ Evaluation of clonal herbs of Lamiaceae species for management of diabetes and hypertension - http://apjcn.org/update%5Cpdf%5C2006%5C1%5C107%5C107.pdf Metformin-like effect of Salvia officinalis (common sage): is it useful in diabetes prevention? - https://www.ncbi.nlm.nih.gov/pubmed/16923227 Antidiabetic effect of garlic (Allium sativum L.) in normal and streptozotocin-induced diabetic rats - http://www.sciencedirect.com/science/article/pii/S0944711305002175 Antiglycation Properties of Aged Garlic Extract: Possible Role in Prevention of Diabetic Complications - http://jn.nutrition.org/content/136/3/796S.full#fn-1 Effect of ethanolic extract of Zingiber officinale on dyslipidaemia in diabetic rats - http://www.sciencedirect.com/science/article/pii/S0378874104005732 Effect of Ginger Extract Consumption on levels of blood Glucose, Lipid Profile and Kidney Functions in Alloxan Induced-Diabetic Rats - http://s3.amazonaws.com/academia.edu.documents/35273868/17.pdf?AWSAccessKeyId=AKIAJ56TQJRTWSMTNPEA&Expires=1484639718&Signature=Zb4rY42u7WJrbngfV6pCQzu61e0%3D&response-content-disposition=inline%3B%20filename%3DEffect_of_Ginger_Extract_Consumption_on.pdf Efficacy of turmeric on blood sugar and polyol pathway in diabetic albino rats - http://link.springer.com/article/10.1023/A:1013106527829 Hypolipidemic action of curcumin, the active principle of turmeric (Curcuma longa) in streptozotocin induced diabetic rats - http://link.springer.com/article/10.1023/A:1006819605211 A REVIEW ON ROLE OF MURRAYA KOENIGII (CURRY LEAF) IN (DIABETES MELLITUS – TYPE II) PRAMEHA - http://www.journalijdr.com/sites/default/files/4740.pdf Capsaicin and glucose absorption and utilization in healthy human subjects - https://www.ncbi.nlm.nih.gov/pubmed/16612838 Inhibition of Advanced Glycation End-Product Formation by Origanum majorana L. In Vitro and in Streptozotocin-Induced Diabetic Rats - https://www.ncbi.nlm.nih.gov/pubmed/23008741 Use of Fenuqreek seed powder in the management of non-insulin dependent diabetes mellitus - http://www.sciencedirect.com/science/article/pii/0271531796001418 Ginseng and Diabetes: The Evidences from In Vitro, Animal and Human Studies - http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.797.4558&rep=rep1&type=pdf  

These dietary recommendations have made high carb, low-fat foods a staple of the American diet. “Healthy” foods like fruit-on-the-bottom yogurt, sugary protein shakes and low-fat processed grains flooded the market. The standard American diet began to include more sugary drinks and sodas, as well as more processed grains. Since all carbohydrates (even complex carbs) are broken down into sugar in the body, these dietary recommendations meant that the average blood sugar of Americans began to rise – and the diabetes epidemic began to grow.
Even if you aim to lose 5% of your body weight, if overweight, you are likely to see a fall in your blood glucose levels back into the normal range but even then we can’t say diabetes has been reversed or gone away. These actions build-up the body’s ability to respond to rising levels but if you get sick, eat more carbohydrate or gain some weight, more than likely your blood glucose levels will be on the rise again into the diabetes range.
Imagine that you hide your kitchen garbage under the rug instead throwing it outside in the trash. You can’t see it, so you can pretend your house is clean. When there’s no more room underneath the rug, you throw the garbage into your bedroom, and bathroom, too. Anywhere where you don’t have to see it. Eventually, it begins to smell. Really, really bad. You needed to throw out the garbage, not hide it away. If we understand that too much sugar in the blood is toxic, why can’t we understand that too much sugar in the body is toxic too?
The first step is to eliminate all sugar and refined starches from your diet. Sugar has no nutritional value and can therefore be eliminated. Starches are simply long chains of sugars. Highly refined starches such as flour or white rice are quickly broken down by digestion into glucose. This is quickly absorbed into the blood and raises blood sugar. For example, eating white bread increases blood sugars very quickly.
Triglycerides are a common form of fat that we digest. Triglycerides are the main ingredient in animal fats and vegetable oils. Elevated levels of triglycerides are a risk factor for heart disease, heart attack, stroke, fatty liver disease, and pancreatitis. Elevated levels of triglycerides are also associated with diseases like diabetes, kidney disease, and medications (for example, diuretics, birth control pills, and beta blockers). Dietary changes, and medication if necessary can help lower triglyceride blood levels.
Within the hepatocyte, fatty acids can only be derived from de novo lipogenesis, uptake of nonesterified fatty acid and LDL, or lipolysis of intracellular triacylglycerol. The fatty acid pool may be oxidized for energy or may be combined with glycerol to form mono-, di-, and then triacylglycerols. It is possible that a lower ability to oxidize fat within the hepatocyte could be one of several susceptibility factors for the accumulation of liver fat (45). Excess diacylglycerol has a profound effect on activating protein kinase C epsilon type (PKCε), which inhibits the signaling pathway from the insulin receptor to insulin receptor substrate 1 (IRS-1), the first postreceptor step in intracellular insulin action (46). Thus, under circumstances of chronic energy excess, a raised level of intracellular diacylglycerol specifically prevents normal insulin action, and hepatic glucose production fails to be controlled (Fig. 4). High-fat feeding of rodents brings about raised levels of diacylglycerol, PKCε activation, and insulin resistance. However, if fatty acids are preferentially oxidized rather than esterified to diacylglycerol, then PKCε activation is prevented, and hepatic insulin sensitivity is maintained. The molecular specificity of this mechanism has been confirmed by use of antisense oligonucleotide to PKCε, which prevents hepatic insulin resistance despite raised diacylglycerol levels during high-fat feeding (47). In obese humans, intrahepatic diacylglycerol concentration has been shown to correlate with hepatic insulin sensitivity (48,49). Additionally, the presence of excess fatty acids promotes ceramide synthesis by esterification with sphingosine. Ceramides cause sequestration of Akt2 and activation of gluconeogenic enzymes (Fig. 4), although no relationship with in vivo insulin resistance could be demonstrated in humans (49). However, the described intracellular regulatory roles of diacylglycerol and ceramide are consistent with the in vivo observations of hepatic steatosis and control of hepatic glucose production (20,21).
Several types of plants are referred to as ginseng, but most studies have used American ginseng. They've shown some sugar-lowering effects in fasting and after-meal blood sugar levels, as well as in A1c results (average blood sugar levels over a 3-month period). But we need larger and more long-term studies. Researchers also found that the amount of sugar-lowering compound in ginseng plants varies widely.
Studies conducted in the United States[43] and Europe[44] showed that drivers with type 1 diabetes had twice as many collisions as their non-diabetic spouses, demonstrating the increased risk of driving collisions in the type 1 diabetes population. Diabetes can compromise driving safety in several ways. First, long-term complications of diabetes can interfere with the safe operation of a vehicle. For example, diabetic retinopathy (loss of peripheral vision or visual acuity), or peripheral neuropathy (loss of feeling in the feet) can impair a driver’s ability to read street signs, control the speed of the vehicle, apply appropriate pressure to the brakes, etc.
Conventional cow’s milk: Conventional cow’s milk and dairy products should be eliminated, especially for people with type 1 diabetes. Dairy can be a fantastic food for balancing blood sugar if it comes from goat’s, sheep or A2 cows. But stay away from all other forms of dairy because the A1 casein produced by conventional cows will harm the body and trigger an immune response similar to gluten. When buying dairy, only purchase raw and organic products from pasture-raised animals.
1. Avoid toxins as much as possible: There is no doubt that we live in a polluted world, and it is next to impossible to avoid all toxins, however, recent research suggests that environmental toxins such as pesticides in our food and drinking water can be factors in causing or worsening Type 1 Diabetes. To lessen the amount of toxins that enter the body, try to buy “green” cleaners, organic fruits and vegetables, and dairy that is from organic or grass-fed cows. Although these items may be a bit more expensive, the health benefits are well-worth the higher price tag.
While Type 1 Diabetes is an autoimmune disorder that seems to affect people with certain gene types, Type 2 Diabetes is triggered by lifestyle choices, such as poor diet and obesity. Eating sugary and processed foods contributes to weight gain, and that extra body fat can be released into the bloodstream, impeding the absorption of insulin and other chemicals related to metabolism. When metabolism is slowed, weight gain is more likely, and the cycle repeats itself. Treatment for Type 2 Diabetes is multifaceted, often including insulin injections, a host of medications, and lifestyle modifications such as diet changes and exercise regimens.
Change in fasting plasma glucose (A), 2 h post-oral glucose tolerance test (B), and homeostasis model assessment (HOMA-B) insulin secretion (C) during the 16-year follow-up in the Whitehall II study. Of the 6,538 people studied, diabetes developed in 505. Time 0 was taken as the diagnosis of diabetes or as the end of follow-up for those remaining normoglycemic. Redrawn with permission from Tabák et al. (80).

I feel the information is partial and not based scientific research, it treats values but what is the root of insulin resistance is avoided, the theory that taking the sugar and carbohydrates and enter protein and oil will improve the situation is based on clear results of the diet in shorten period, of course that the problem root is not treated and became worst, the insulin resistance is not a genetic only or abnormal function developed by the consume of carbs, evidence shows more and more that actually refined carbs and oil and animal protein is connected. I think modestly that the for those that want to reverse the chronic disease the best way is to test what is offered and then go to a fasting-sugar-overload test and see if the resistance has been removed, I will like to read if this has been checked by the doctors, thanks
In general, “remission” in diabetes means a person’s blood sugar levels remain normal. While some refer to this as a “cure,” diabetes is not a “one and done,” disease. That is, it could always return if the patient regains the weight or returns to unhealthy habits. In 2009, a group of diabetes experts wrote that “remission” is a term used when a person has normal blood sugar levels for one year without therapy or surgery.

In that analysis, the Khan study looks like an outlier. More studies have emerged since then: Crawford in 2009 found 1g of cinnamon per day reduced A1C levels compared to placebo. Suppapitiporn found no effect on any measure with 1.5g per day. Akilen, in 2010, found an effect with 2g per day. Another meta-analysis, published in 2012 and included 6 studies, concluded the opposite of Baker, and made positive conclusions:
Chong points to previous research in Circulation that describes the underlying mechanisms of sleep apnea. In people with sleep apnea, activation of the sympathetic nervous system — including increased heart rate, increased blood pressure, and constriction of blood vessels — all led to a higher risk of heart attack and stroke, which can be compounded in people who have type 2 diabetes (and thus already have a higher risk of heart disease).
Although the relationship between magnesiumand diabetes has been studied for decades, we still don't fully understand it. Low magnesium may worsen blood sugar control in type 2 diabetes. Scientists say that it interrupts insulin secretion in the pancreas and builds insulin resistance in the body's tissues. And evidence suggests that a magnesium deficiency may contribute to some diabetes complications. People who get more magnesium in their diet (by eating whole grains, nuts, and green leafy vegetables) have a lower risk of type 2 diabetes.

The bottom line is that diabetes can be bad news—but this doesn’t have to be the case. Interventions can prevent or delay the disease in people with prediabetes. The Diabetes Prevention Program (DPP), a large study of people at high risk of diabetes, has established a prevention plan that’s both feasible and cost-effective. The DPP showed that weight loss and increased physical activity reduced the development of type 2 diabetes by 58% during a three-year period.

Gymnema Sylvestre is a vine native to Central & South India. Used in traditional Indian medicine since the 6th century BC, the leaves of this plant contain ‘gymnemic acids’ that have the amazing ability to slow down the transport of glucose from the intestines to the bloodstream. Some scientists even believe that Gymnema Sylvestre extract can help repair and regenerate pancreatic beta cells that produce insulin!
Reversal of type 2 diabetes to normal metabolic control by either bariatric surgery or hypocaloric diet allows for the time sequence of underlying pathophysiologic mechanisms to be observed. In reverse order, the same mechanisms are likely to determine the events leading to the onset of hyperglycemia and permit insight into the etiology of type 2 diabetes. Within 7 days of instituting a substantial negative calorie balance by either dietary intervention or bariatric surgery, fasting plasma glucose levels can normalize. This rapid change relates to a substantial fall in liver fat content and return of normal hepatic insulin sensitivity. Over 8 weeks, first phase and maximal rates of insulin secretion steadily return to normal, and this change is in step with steadily decreasing pancreatic fat content. The difference in time course of these two processes is striking. Recent information on the intracellular effects of excess lipid intermediaries explains the likely biochemical basis, which simplifies both the basic understanding of the condition and the concepts used to determine appropriate management. Recent large, long-duration population studies on time course of plasma glucose and insulin secretion before the diagnosis of diabetes are consistent with this new understanding. Type 2 diabetes has long been regarded as inevitably progressive, requiring increasing numbers of oral hypoglycemic agents and eventually insulin, but it is now certain that the disease process can be halted with restoration of normal carbohydrate and fat metabolism. Type 2 diabetes can be understood as a potentially reversible metabolic state precipitated by the single cause of chronic excess intraorgan fat.
Fasting is the simplest and fastest method to force your body to burn sugar for energy. Glucose in the blood is the most easily accessible source of energy for the body. Fasting is merely the flip side of eating — if you are not eating you are fasting. When you eat, your body stores food energy. When you fast, your body burns food energy. If you simply lengthen out your periods of fasting, you can burn off the stored sugar.
As time goes on, however, blood sugar levels can begin to rise again. Diabetes is a progressive disease which means that what is done today to care for it, may not work as well a year or two from now. A key to keeping blood sugar levels under control is to be active, watch portions of all foods, include all food groups and visit your doctor to make sure the blood sugar levels are staying at a safe level.

The earliest predictor of the development of type 2 diabetes is low insulin sensitivity in skeletal muscle, but it is important to recognize that this is not a distinct abnormality but rather part of the wide range expressed in the population. Those people in whom diabetes will develop simply have insulin sensitivity, mainly in the lowest population quartile (29). In prediabetic individuals, raised plasma insulin levels compensate and allow normal plasma glucose control. However, because the process of de novo lipogenesis is stimulated by higher insulin levels (38), the scene is set for hepatic fat accumulation. Excess fat deposition in the liver is present before the onset of classical type 2 diabetes (43,74–76), and in established type 2 diabetes, liver fat is supranormal (20). When ultrasound rather than magnetic resonance imaging is used, only more-severe degrees of steatosis are detected, and the prevalence of fatty liver is underestimated, with estimates of 70% of people with type 2 diabetes as having a fatty liver (76). Nonetheless, the prognostic power of merely the presence of a fatty liver is impressive of predicting the onset of type 2 diabetes. A large study of individuals with normal glucose tolerance at baseline showed a very low 8-year incidence of type 2 diabetes if fatty liver had been excluded at baseline, whereas if present, the hazard ratio for diabetes was 5.5 (range 3.6–8.5) (74). In support of this finding, a temporal progression from weight gain to raised liver enzyme levels and onward to hypertriglyceridemia and then glucose intolerance has been demonstrated (77).

The problem, of course, has not been solved — the sugar bowl is still overflowing. You’ve only moved sugar from the blood (where you could see it) into the body (where you couldn’t see it). It’s putting a band-aid over a bullet hole. So, the very next time you eat, the exact same thing happens. Sugar comes in, spills out into the blood and you take medication to cram the sugar back into the body. This works for a while, but eventually, the body fills up with sugar, too. Now, that same dose of medication cannot force any more sugar into the body.
Cutting out the refined, processed starches and sugars, BG rebound into a normal range very quickly. My experience is when people begin to be more conscious of their food intake and physical activity, which happens immediately after being diagnosed with pre diabetes or diabetes, they begin to make better food choices and cut out the foods they know are not healthy.
Eating too many refined carbohydrates elevates your insulin levels for long periods of time and your cells start to become resistant to the effects of insulin. Think of this a bit like alcohol. When you start to drink, a single glass of wine can make you feel drunk. Once your body becomes accustomed to drinking, you need more and more alcohol to achieve the same effect. This is what happens in diabetes. You need more and more insulin to do the same thing. The problem is that too much insulin is toxic to the body.
Regular blood testing, especially in type 1 diabetics, is helpful to keep adequate control of glucose levels and to reduce the chance of long term side effects of the disease. There are many (at least 20+) different types of blood monitoring devices available on the market today; not every meter suits all patients and it is a specific matter of choice for the patient, in consultation with a physician or other experienced professional, to find a meter that they personally find comfortable to use. The principle of the devices is virtually the same: a small blood sample is collected and measured. In one type of meter, the electrochemical, a small blood sample is produced by the patient using a lancet (a sterile pointed needle). The blood droplet is usually collected at the bottom of a test strip, while the other end is inserted in the glucose meter. This test strip contains various chemicals so that when the blood is applied, a small electrical charge is created between two contacts. This charge will vary depending on the glucose levels within the blood. In older glucose meters, the drop of blood is placed on top of a strip. A chemical reaction occurs and the strip changes color. The meter then measures the color of the strip optically.
Like trials with any other supplement or herbal product, the primary question we must answer is “What exactly was studied?”. The cinnamon you have in your kitchen may be a single species of plant or a mix of different cultivars. Ceylon cinnamon (Cinnamommum verum) is more commonly found in the West. Cassia cinnamon (Cinnamomum aromaticum) is the version of cinnamon that’s been studied in trials. The chemical hydroxychalcone has been identified as a potential active ingredient, which is believed to modify the sensitivity of cells to insulin, enhancing their uptake. If that’s the true mechanism of action, then it would work in a manner similar to that of the drugs Avandia, Actos, and metformin (Glucophage). Given the active ingredient (or ingredients) have not yet been definitively isolated, the issue of studying cinnamon is problematic. There’s no way to assess the potency of any batch, which complicates any evaluation. And that may be a reason why the research with cinnamon is inconsistent and largely disappointing.
Thank you so much for providing this expert panel. The varying views helped me understand which areas are somewhat vague and which areas overlap. As a Type2 pre-diabetic of 7 years, I have been informed that I need to take a cholesterol drug, even though my cholesterol has always been low. I was told it’s to help remove calcification in my arteries. I have been considered obese for over 20 years and recently lost 50 lbs (I now weight 197) and am continuing to lose weight. I was told that I would always be a diabetic and would have to take medication. I was so proud of my progress (A1c now 5.6), but this news depressed me. I refused to take the cholesterol drug until I could do some research. This expert panel helped me to realize that it is possible to get off the medication if I continue to eat a healthy diet (low saturated fats) and exercise at least 150 minutes a week. Thank you!
Some people with type 2 diabetes can manage their disease by making healthy food choices and being more physically active. Many people with type 2 diabetes need diabetes medicines as well. These medicines may include diabetes pills or medicines you inject under your skin, such as insulin. In time, you may need more than one diabetes medicine to control your blood glucose. Even if you do not take insulin, you may need it at special times, such as during pregnancy or if you are in the hospital.
×