They would often say to me, “Doctor. You’ve always said that weight loss is the key to reversing diabetes. Yet you prescribed me a drug that made me gain 25 pounds. How is that good?” I never had a good answer, because none existed. It was not good. The key was weight loss, whereupon the diabetes often goes away or at least gets significantly better. So, logically, insulin does not help reverse the disease, but actually worsens it.
A series of studies from Newcastle University in Newcastle upon Tyne, United Kingdom, starting in 2011 have supported this notion, including a new report published online August 2 in the journal Cell Metabolism. This current investigation examined reasons why substantial weight loss in some patients produces type 2 diabetes remission, which is a state in which most or all signs and symptoms of diabetes disappear.

Insulin is a hormone that helps glucose get where it needs to go. When your body senses that you’ve eaten something, your pancreas produces insulin to help your cells absorb sugar. If you didn’t have insulin, your cells wouldn’t receive their glucose fuel, and your body would sense sugar in your bloodstream and eventually store it as fat because your cells didn’t use it.
An injection port has a short tube that you insert into the tissue beneath your skin. On the skin’s surface, an adhesive patch or dressing holds the port in place. You inject insulin through the port with a needle and syringe or an insulin pen. The port stays in place for a few days, and then you replace the port. With an injection port, you no longer puncture your skin for each shot—only when you apply a new port.
Maintaining normal blood sugar levels is necessary for the body’s overall health. Erratic blood sugar levels can affect the body’s ability to function normally and even lead to complications if left unchecked. Some herbs and spices found in nature do a tremendous job of naturally lowering blood sugar levels, making them a boon for diabetics and pre-diabetics. What’s more, being nature’s multi-taskers, herbs and spices also produce overall health benefits beyond just helping balance blood sugar.
Unfortunately, most people are not given the benefit of this approach. When diagnosed with diabetes, most people are told to avoid sugar (good step, not the solution). If the problem is bad enough, they are told to take medication to give the body insulin. The problem is, as we saw above, diabetes is a problem with the body’s regulation of insulin, caused by a resistance to insulin and an overproduction to remove toxic amounts of glucose in the bloodstream. Insulin is also dangerous if it is left circulating the the blood. Somehow, treating too much circulating glucose and insulin with more insulin doesn’t seem like the right approach…
Levels which are significantly above or below this range are problematic and can in some cases be dangerous. A level of <3.8 mmol/L (<70 mg/dL) is usually described as a hypoglycemic attack (low blood sugar). Most diabetics know when they are going to "go hypo" and usually are able to eat some food or drink something sweet to raise levels. A patient who is hyperglycemic (high glucose) can also become temporarily hypoglycemic, under certain conditions (e.g. not eating regularly, or after strenuous exercise, followed by fatigue). Intensive efforts to achieve blood sugar levels close to normal have been shown to triple the risk of the most severe form of hypoglycemia, in which the patient requires assistance from by-standers in order to treat the episode.[8] In the United States, there were annually 48,500 hospitalizations for diabetic hypoglycemia and 13,100 for diabetic hypoglycemia resulting in coma in the period 1989 to 1991, before intensive blood sugar control was as widely recommended as today.[9] One study found that hospital admissions for diabetic hypoglycemia increased by 50% from 1990–1993 to 1997–2000, as strict blood sugar control efforts became more common.[10] Among intensively controlled type 1 diabetics, 55% of episodes of severe hypoglycemia occur during sleep, and 6% of all deaths in diabetics under the age of 40 are from nocturnal hypoglycemia in the so-called 'dead-in-bed syndrome,' while National Institute of Health statistics show that 2% to 4% of all deaths in diabetics are from hypoglycemia.[11] In children and adolescents following intensive blood sugar control, 21% of hypoglycemic episodes occurred without explanation.[12] In addition to the deaths caused by diabetic hypoglycemia, periods of severe low blood sugar can also cause permanent brain damage.[13] Although diabetic nerve disease is usually associated with hyperglycemia, hypoglycemia as well can initiate or worsen neuropathy in diabetics intensively struggling to reduce their hyperglycemia.[14]
Type 2 diabetes has long been known to progress despite glucose-lowering treatment, with 50% of individuals requiring insulin therapy within 10 years (1). This seemingly inexorable deterioration in control has been interpreted to mean that the condition is treatable but not curable. Clinical guidelines recognize this deterioration with algorithms of sequential addition of therapies. Insulin resistance and β-cell dysfunction are known to be the major pathophysiologic factors driving type 2 diabetes; however, these factors come into play with very different time courses. Insulin resistance in muscle is the earliest detectable abnormality of type 2 diabetes (2). In contrast, changes in insulin secretion determine both the onset of hyperglycemia and the progression toward insulin therapy (3,4). The etiology of each of these two major factors appears to be distinct. Insulin resistance may be caused by an insulin signaling defect (5), glucose transporter defect (6), or lipotoxicity (7), and β-cell dysfunction is postulated to be caused by amyloid deposition in the islets (8), oxidative stress (9), excess fatty acid (10), or lack of incretin effect (11). The demonstration of reversibility of type 2 diabetes offers the opportunity to evaluate the time sequence of pathophysiologic events during return to normal glucose metabolism and, hence, to unraveling the etiology.
There have been some small, limited studies as well as anecdotal reports that certain alternative or “natural” treatments can help control blood glucose levels in people with diabetes or otherwise prevent the condition or prevent its complications. These can include herbs or dietary supplements. Examples include garlic, cinnamon, alpha-lipoic acid, aloe vera, chromium, ginseng, and magnesium.
Diabetes education is very important for any diabetic or a person who has a diabetic at home. The education helps an individual to know more about this dreadful disease. Once educated, the individual can control diabetes in a better manner. Administering insulin, medications, and understanding emergency situations like hypoglycemic attacks, etc. are major points of diabetes education. It also includes the diet a diabetic should avoid and have. Diabetes education is very essential for each and every diabetic and individual who has someone close living with diabetes.

You also might hear about alternative treatments for diabetes, such as herbal remedies and vitamin or mineral supplements. These practices can be risky, especially when people stop following the treatment plan their doctor has given them. So get the facts by talking to your diabetes health care team. They keep track of the latest research developments, and will introduce new products as they become available.
These seeds, used in Indian cooking, have been found to lower blood sugar, increase insulin sensitivity, and reduce high cholesterol, according to several animal and human studies. The effect may be partly due to the seeds’ high fiber content. The seeds also contain an amino acid that appears to boost the release of insulin. In one of the largest studies on fenugreek, 60 people who took 25 grams daily showed significant improvements in blood sugar control and post-meal spikes.
These three are the axis of evil in the nutrition world. They are all new introductions to the human diet, especially in the forms they are most eaten in (processed flour, table sugar and High Fructose Corn Syrup and vegetable oils).As we already know, grains (especially in a highly processed form) not only raise insulin levels but can damage the lining of the gut, even in those with no official celiac disease. Grains also cause inflammation in the body and can initiate an immune response.
When the weight loss lessens the liver and pancreas fat, the insulin-producing beta cells in the pancreas come to life again. "Almost everyone will return to normal if they lose a substantial amount of weight," Taylor says. "This is a simple disease." What's yet to be figured out, he says, is why the weight loss doesn't lead to a reversal in everyone.
Alpha lipoic acid is an antioxidant that helps turn glucose into fuel for the body. It effectively improves insulin sensitivity and reduces symptoms of diabetic neuropathy, such as weakness, pain and numbness that’s caused by nerve damage. Although we make alpha lipoic acid and it can be found in some food sources, like broccoli, spinach and tomatoes, taking an ALA supplement will increase the amount that circulates in your body, which can be extremely beneficial when trying to reverse diabetes naturally. (17)
You’ll give yourself insulin shots using a needle and syringe. You will draw up your dose of insulin from the vial, or bottle, into the syringe. Insulin works fastest when you inject it in your belly, but you should rotate spots where you inject insulin. Other injection spots include your thigh, buttocks, or upper arm. Some people with diabetes who take insulin need two to four shots a day to reach their blood glucose targets. Others can take a single shot.
Whole-body insulin resistance is the earliest predictor of type 2 diabetes onset, and this mainly reflects muscle insulin resistance (26). However, careful separation of the contributions of muscle and liver have shown that early improvement in control of fasting plasma glucose level is associated only with improvement in liver insulin sensitivity (20,21). It is clear that the resumption of normal or near-normal diurnal blood glucose control does not require improvement in muscle insulin sensitivity. Although this finding may at first appear surprising, it is supported by a wide range of earlier observations. Mice totally lacking in skeletal muscle insulin receptors do not develop diabetes (27). Humans who have the PPP1R3A genetic variant of muscle glycogen synthase cannot store glycogen in muscle after meals but are not necessarily hyperglycemic (28). Many normoglycemic individuals maintain normal blood glucose levels with a degree of muscle insulin resistance identical to those with type 2 diabetes (29).
The benefits of T1D medications far outweigh their associated side effects. The most common side effects of insulin are injection site reactions, which includes redness, soreness or irritation around the area. People can also experience lowered potassium levels and a risk of hypoglycemia. While these side effects can sound daunting, keep in mind that many people using these medications don’t experience serious side effects at all.
Dr. Steven Lin is a dentist who focusses on the mouth-body connection. Through ancestral nutrition, the oral and gut microbiome, and epigenetics, his programs aim to prevent chronic dental and systemic disease. His book 'The Dental Diet', will be released on January 18'. To receive free updates on functional oral health from Dr. Lin, subscribe to his newsletter below.
Low blood sugar, or hypoglycemia, is a syndrome in which a person's blood sugar is dangerously low. People with type 1 and type 2 diabetes are at risk for this condition. There are other diseases that can cause a person's blood sugar levels to go too low, for example, pancreatitis, Cushing's syndrome, and pancreatic cancer. Symptoms and signs that your blood sugar levels are too low include:
Melissa Conrad Stöppler, MD, is a U.S. board-certified Anatomic Pathologist with subspecialty training in the fields of Experimental and Molecular Pathology. Dr. Stöppler's educational background includes a BA with Highest Distinction from the University of Virginia and an MD from the University of North Carolina. She completed residency training in Anatomic Pathology at Georgetown University followed by subspecialty fellowship training in molecular diagnostics and experimental pathology.
×