For our very insulin resistant patients with type 2 diabetes, after starting out at 30 grams, a few months later most of our patients find that they can increase their daily carb intake to 40 or 50 grams. Fifty grams of total carbohydrate typically allows 4-5 servings of non-starchy vegetables, 2 oz of nuts, and 3 oz of berry fruit (which includes avocado – but obviously you’d need to share it with someone unless it’s a tiny one!)”
Jump up ^ Tuomilehto, J; Lindström, J; Eriksson, JG; Valle, TT; Hämäläinen, H; Ilanne-Parikka, P; Keinänen-Kiukaanniemi, S; Laakso, M; et al. (2001). "Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance". The New England Journal of Medicine. 344 (18): 1343–50. doi:10.1056/NEJM200105033441801. PMID 11333990.
It’s astounding to read that this blog promotes eating salami, sausage, and bacon which the World Health Organization has designated all three a Class 2 carcinogen. While most of the information that you shared on this topic may help diabetic patients and those who are pre-diabetic, it’s important to look at these diets as to not only the type of fat but the quality of the fat and how processed they are; only then can we understand that there are two separate kinds of carbs, there are two separate kinds of fats, and those are fats and carbs that are processed. When you have processed fats and processed carbs, the rate of cardiovascular disease, diabetes, and cancer rates skyrocket. So it’s not just fats that we should consider eating or carbs that we should consider, it’s the kinds of fats and the kinds of carbs that should be scrutinized thoroughly to get a better understanding of exactly what is healthy for the diet for people both young and old.

Jump up ^ Tuomilehto, J; Lindström, J; Eriksson, JG; Valle, TT; Hämäläinen, H; Ilanne-Parikka, P; Keinänen-Kiukaanniemi, S; Laakso, M; et al. (2001). "Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance". The New England Journal of Medicine. 344 (18): 1343–50. doi:10.1056/NEJM200105033441801. PMID 11333990.
Pancreatic islet transplantation is an experimental treatment for poorly controlled type 1 diabetes. Pancreatic islets are clusters of cells in the pancreas that make the hormone insulin. In type 1 diabetes, the body’s immune system attacks these cells. A pancreatic islet transplant replaces destroyed islets with new ones that make and release insulin. This procedure takes islets from the pancreas of an organ donor and transfers them to a person with type 1 diabetes. Because researchers are still studying pancreatic islet transplantation, the procedure is only available to people enrolled in research studies. Learn more about islet transplantation studies.
The physician can also make referrals to a wide variety of professionals for additional health care support. In the UK a patient training course is available for newly diagnosed diabetics (see DESMOND). In big cities, there may be diabetes centers where several specialists, such as diabetes educators and dietitians, work together as a team. In smaller towns, the health care team may come together a little differently depending on the types of practitioners in the area. By working together, doctors and patients can optimize the healthcare team to successfully manage diabetes over the long term.
Replacing humans with computers could make patients better control their sugar levels and suffer less complications in the long term. The French company Cellnovo has already shown that just a partially automated system, where blood sugar levels can be monitored wirelessly but patients still select insulin amounts, can reduce the chances of reaching life-threatening low sugar levels up to 39%. The company is now working towards developing a fully automated artificial pancreas in collaboration with Imperial College, the Diabeloop consortium and the Horizon2020 program.

Recently[when?] it has been suggested that a type of gastric bypass surgery may normalize blood glucose levels in 80–100% of severely obese patients with diabetes. The precise causal mechanisms are being intensively researched; its results may not simply be attributable to weight loss, as the improvement in blood sugars seems to precede any change in body mass. This approach may become a treatment for some people with type 2 diabetes, but has not yet been studied in prospective clinical trials.[83] This surgery may have the additional benefit of reducing the death rate from all causes by up to 40% in severely obese people.[84] A small number of normal to moderately obese patients with type 2 diabetes have successfully undergone similar operations.[85][86]
Because many patients with diabetes have two or more comorbidities, they often require multiple medications. The prevalence of medication nonadherence is high among patients with chronic conditions, such as diabetes, and nonadherence is associated with public health issues and higher health care costs. One reason for nonadherence is the cost of medications. Being able to detect cost-related nonadherence is important for health care professionals, because this can lead to strategies to assist patients with problems paying for their medications. Some of these strategies are use of generic drugs or therapeutic alternatives, substituting a prescription drug with an over-the-counter medication, and pill-splitting. Interventions to improve adherence can achieve reductions in diabetes morbidity and mortality, as well as significant cost savings to the health care system.[62] Smartphone apps have been found to improve self-management and health outcomes in people with diabetes through functions such as specific reminder alarms,[63] while working with mental health professionals has also been found to help people with diabetes develop the skills to manage their medications and challenges of self-management effectively.[64]
This modality can be contrasted with the emphasis of conventional medicine, which is to cure or mitigate disease, as reported by the American Holistic Health Association. For example, a conventional practitioner will follow an established algorithm for diabetes management that includes a medically established protocol centered on monitoring blood sugar and prescribing medications to balance it. An alternative medicine provider takes a personalized, whole-person approach that may include a prescription for changes in diet and exercise habits, stress reduction, and other lifestyle considerations. (The table below offers a comparison of alternative medicine with conventional medicine.)
The food pyramid recommended 6-11 servings of carbs per day, and very little fat — a low-fat, high-carb diet. As we outlined in our last video, type 2 diabetes is a disease of carbohydrate intolerance. Someone with type 2 diabetes or prediabetes has a low carbohydrate tolerance, so eating carbs will lead to exaggerated blood sugar spikes. While those with a high carb tolerance may be able to eat a carb-heavy diet and remain healthy, someone with a low carb tolerance will experience chronic high blood sugar and likely even weight gain if they eat a high-carb diet.
I read ur research i am totally fovour of ur research but i tell u homeopathic treatment is very sucessful for the help of curing debetic. i am a homeopathic doctor if any patient wants help for medicine call me on my cell 092 321 5260211 and i will give full guidence for debetic patients free of cost becoz it will be treatment of human not a single man i am in pakistan punjab attock city
Chromium plays a vital role in binding to and activating the insulin receptor on body cells, reducing insulin resistance. Supplemental chromium has been shown to lower blood sugar levels, lipids, A1C, and insulin in diabetic patients. It can also help decrease one’s appetite, particularly for sweets. A dosage from 200 mcg to 2,000 mcg a day is safe. Higher doses are unnecessary and can cause acute kidney failure.
“High glycemic index foods are going to be primarily processed foods,” says Lori Chong, RD, CDE, at The Ohio State University Wexner Medical Center in Columbus. Those processed foods tend to have more white sugar and flour in them, which are higher on the GI, she says. Foods lower on the GI include vegetables, especially non-starchy vegetables, like broccoli, cauliflower, and leafy greens and whole-grain products, such as brown rice (as opposed to white rice), Chong says. She notes that even many fruits are low on the GI, with pineapple and dried fruit being some of the highest (Berries, apples, and pears tend to be fairly low.)

This article is great, it combines all of the info I have found, not only putting it into a well written article but adds info I had not found yet. I have struggled with type 2 and losing weight, starting an aggressive weight cardio plan in 2016 with an A1C level of 9.7%. Even after three months of an hour or more of weight lifting and 30-50 mins of hard hilly terrain bike riding, my bets A1C was 7.7% with lowering my carb count to the recommended range. After an injury caused me to have to stop many of the exercises for a bit my A1C went up to the 9% range. July this year my A1C was 9.9% and my Dr was talking about insulin shots, which I hate needles. One last ditch effort to find a solution and avoid the shots, I found an article about the benefits of intermittent fasting. I did a lot of research on the matter before creating my own version of a Keto diet, and went on a strict diet of 5-8 servings of green leafy vegetables a day, around 45g of carbs a day, 3oz of lean or healthy fat protein a meal and fasting for 18 hours between Dinner till lunch the next day for two and a half months. My A1C was 6.5, I lost 20lbs, and have tons of energy and no cravings. I have altered my diet to fit my new exercise plan, still 5-8 servings of vegetables a day, but have added occasional breakfasts of two eggs and 1/2 cup salsa, no more than 100g of carbs a day except my once a week cheat day that might go slightly higher if my blood sugar is in a good range, 6oz lean healthy fat protein, and a hard boiled egg in between meals.


The problem is, glucose is actually toxic if it is just floating around in your bloodstream, so that body has a defense mechanism. Any glucose that is not immediately used is stored as glycogen in the liver and the muscles. This would be all well and good except that your body has a limited number of glycogen receptors. When these are full, as they almost always are in inactive people, the body only has one option left: to store all the excess glucose as saturated fat within the body.
Artificial Intelligence researcher Dr. Cynthia Marling, of the Ohio University Russ College of Engineering and Technology, in collaboration with the Appalachian Rural Health Institute Diabetes Center, is developing a case based reasoning system to aid in diabetes management. The goal of the project is to provide automated intelligent decision support to diabetes patients and their professional care providers by interpreting the ever-increasing quantities of data provided by current diabetes management technology and translating it into better care without time consuming manual effort on the part of an endocrinologist or diabetologist.[56] This type of Artificial Intelligence-based treatment shows some promise with initial testing of a prototype system producing best practice treatment advice which anaylizing physicians deemed to have some degree of benefit over 70% of the time and advice of neutral benefit another nearly 25% of the time.[5]
If the T2DM has been recently diagnosed, there is a greater likelihood of being able to reverse the disease. Doing this requires losing approximately 5-10% of current body weight, balancing carbs and protein and engaging in daily physical exercise. A diabetes educator (C.D.E.) is the expert who can help put together a plan for realistic and permanent lifestyle changes.
A wide scatter of absolute levels of pancreas triacylglycerol has been reported, with a tendency for higher levels in people with diabetes (57). This large population study showed overlap between diabetic and weight-matched control groups. These findings were also observed in a more recent smaller study that used a more precise method (21). Why would one person have normal β-cell function with a pancreas fat level of, for example, 8%, whereas another has type 2 diabetes with a pancreas fat level of 5%? There must be varying degrees of liposusceptibility of the metabolic organs, and this has been demonstrated in relation to ethnic differences (72). If the fat is simply not available to the body, then the susceptibility of the pancreas will not be tested, whereas if the individual acquires excess fat stores, then β-cell failure may or may not develop depending on degree of liposusceptibility. In any group of people with type 2 diabetes, simple inspection reveals that diabetes develops in some with a body mass index (BMI) in the normal or overweight range, whereas others have a very high BMI. The pathophysiologic changes in insulin secretion and insulin sensitivity are not different in obese and normal weight people (73), and the upswing in population rates of type 2 diabetes relates to a right shift in the whole BMI distribution. Hence, the person with a BMI of 24 and type 2 diabetes would in a previous era have had a BMI of 21 and no diabetes. It is clear that individual susceptibility factors determine the onset of the condition, and both genetic and epigenetic factors may contribute. Given that diabetes cannot occur without loss of acute insulin response to food, it can be postulated that this failure of acute insulin secretion could relate to both accumulation of fat and susceptibility to the adverse effect of excess fat in the pancreas.
Any food that you ingest is processed and metabolized by the body. Food is broken down into the various building blocks the body needs, and what cannot be metabolized or used is processed and removed by the liver. Protein and fats are used for muscle and tissue regeneration and other processes in the body. Carbohydrates are typically a fast fuel for the body, but when more are eaten that the body immediately needs, they must be stored. A simple explanation from a previous post:
Every single part of the body just starts to rot. This is precisely why type 2 diabetes, unlike virtually any other disease, affects every part of our body. Every organ suffers the long term effects of the excessive sugar load. Your eyes rot – and you go blind. Your kidneys rot – and you need dialysis. You heart rots – and you get heart attacks and heart failure. Your brain rots – and you get Alzheimers disease. Your liver rots – and you get fatty liver disease. Your legs rot – and you get diabetic foot ulcers. Your nerves rot – and you get diabetic neuropathy. No part of your body is spared.
John’s naturopath, Susan DeLaney, ND, RN, from The Wellness Alliance in Carrboro, North Carolina, considers diabetes to be reversed when an individual is no longer dependent on medication to maintain blood glucose levels within a fairly normal range. Kathie Madonna Swift, MS, RD, LDN, owner of Swift Nutrition and author of The Inside Tract: Your Good Gut Guide to Great Digestive Health, describes reversal of diabetes as “restoring function and bringing the body back into glycemic balance.”
Over a year ago I was diagnosed with DT2. I was devastated… I told that I needed to take medication and eat according to the ADA recommendations. I never did anything that I was told. I refused to take the medication and went to a LCHF diet. My A1C has never been above a 4.7 for an entire year and I lost 80 pounds with doing nothing but eating. I feel great and my labs are stellar…
As a bonus, stress relief may help you sleep better, which is important because studies show that not getting enough sleep can worsen type 2 diabetes. Sleeping less than six hours a night has also been found to contribute to impaired glucose tolerance, a condition that often precedes type 2 diabetes. In fact, a review published in 2015 in Diabetes Care analyzed 10 studies that involved more than 18,000 participants combined and found the lowest risk of type 2 diabetes in the group of participants that slept seven to eight hours per day. That’s the minimum recommended amount of sleep for most adults, according to the National Sleep Foundation.
In Type 2 diabetes, the insulin that is produced does not work effectively. This is referred to as “insulin resistance.” Previously referred to as “adult-onset diabetes,” Type 2 diabetes is the most common form and occurs most frequently in inactive, overweight adults. With rising rates of childhood obesity, we are now seeing Type 2 diabetes diagnosed in more children and teens. Type 2 diabetes is usually treated with a diet that promotes weight loss, exercise and oral medications. Over time, most with Type 2 diabetes produce less insulin. Because of this,insulin may also be required to treat Type 2 diabetes. 

To make matters worse for the inactive, carb addict, when the body senses glucose in the bloodstream, the pancreas releases a hormone called insulin (perhaps you’ve heard of it?) to signal the body to store the glucose as glycogen. If the glycogen receptors are full and it can’t do this, the body thinks that the cells didn’t get the message and releases even more insulin.


Neem tree leaves have ingredients and compounds that lower blood glucose considerably. This property of neem makes it an excellent home remedy for diabetes. A glassful of neem leaves' juice when consumed first thing in the morning can benefit considerably. Regular and prolonged consumption can even trigger production of insulin and subside diabetes completely.
Diabetic persons are advised to make morning appointments to the dental care provider as during this time of the day the blood sugar levels tend to be better kept under control. Not least, individuals who suffer from diabetes must make sure both their physician and dental care provider are informed and aware of their condition, medical history and periodontal status.
In the twentieth century, insulin was available only in an injectable form that required carrying syringes, needles, vials of insulin, and alcohol swabs. Clearly, patients found it difficult to take multiple shots each day; as a result, good blood sugar control was often difficult. Many pharmaceutical companies now offer discreet and convenient methods for delivering insulin.
×