The idea of “reversing” is describing the well managed type 2 diabetes that can be maintained without the outcome of complications (eye disease, kidney disease, etc.). And it is totally possible to have type 2 (or type 1 diabetes for that matter) and have no complications – however, this takes careful management and is largely driven by the patient and their access to quality healthcare.
Curcumin is a bright yellow chemical produced by the spice turmeric, among other plants. Curcumin seems to have multiple benefits for diabetes symptoms. It has been shown to be a marked inhibitor of reactive oxygen species that promote oxidation damage in cells. Curcumin lowers inflammatory chemicals like tumor necrosis factor-alpha, and that’s good because TNF-a causes insulin resistance and irritates fatty livers. Curcumin can reduce another pro-inflammatory chemical called NF-KB. The above-mentioned actions provide a benefit in diabetes protection and reduce the risk of developing diabetes symptoms and complications. Curcumin has also been shown to enhance pancreatic beta cell functioning and reduce fatty liver deposition. It reduces high blood sugar, A1C, and insulin resistance. It was also shown to reduce the onset of Alzheimer’s disease, and that is a higher risk in diabetic patients than in nondiabetic patients. A good dose is 200 to 3,000 mg a day.
In addition to weight loss through traditional methods, some patients with diabetes can have bariatric surgery and then find that their diabetes goes away. Yet not everyone qualifies with this. The person usually needs to have a body mass index of 40 or higher and uncontrolled diabetes, Louard says. “If you regain the weight, the diabetes comes back,” Louard cautions.
Conventional cow’s milk: Conventional cow’s milk and dairy products should be eliminated, especially for people with type 1 diabetes. Dairy can be a fantastic food for balancing blood sugar if it comes from goat’s, sheep or A2 cows. But stay away from all other forms of dairy because the A1 casein produced by conventional cows will harm the body and trigger an immune response similar to gluten. When buying dairy, only purchase raw and organic products from pasture-raised animals.

Diabetes is a progressive disease however it CAN be reversed. Bariatric surgery results have proven that losing weight in morbidly obese patients with Type 2 Diabetes reverses the disease state. Bariatric surgery outcomes have been studied over 10 years with lower rates of mortality and morbidity. Bypass surgery patients normalize blood sugars within days of the procedure.

Imagine that you hide your kitchen garbage under the rug instead throwing it outside in the trash. You can’t see it, so you can pretend your house is clean. When there’s no more room underneath the rug, you throw the garbage into your bedroom, and bathroom, too. Anywhere where you don’t have to see it. Eventually, it begins to smell. Really, really bad.

Another study published in the same journal, however, examined the effect of chromium on glycemic control in insulin-dependent people with type 2 diabetes. People were given either 500 or 1,000 mcg a day of chromium or a placebo for six months. There was no significant difference in glycosylated hemoglobin, body mass index, blood pressure, or insulin requirements across the three groups.

Schedule a yearly physical exam and regular eye exams. Your regular diabetes checkups aren't meant to replace regular physicals or routine eye exams. During the physical, your doctor will look for any diabetes-related complications, as well as screen for other medical problems. Your eye care specialist will check for signs of retinal damage, cataracts and glaucoma.
The researchers followed the participants after they had completed an eight-week low-calorie-milkshake diet and returned to normal eating. Six months later, those who had gone into remission immediately after the diet were still diabetes-free. Though most of those who reversed the disease had had it for less than four years, some had been diabetic for more than eight years.

Within the hepatocyte, fatty acids can only be derived from de novo lipogenesis, uptake of nonesterified fatty acid and LDL, or lipolysis of intracellular triacylglycerol. The fatty acid pool may be oxidized for energy or may be combined with glycerol to form mono-, di-, and then triacylglycerols. It is possible that a lower ability to oxidize fat within the hepatocyte could be one of several susceptibility factors for the accumulation of liver fat (45). Excess diacylglycerol has a profound effect on activating protein kinase C epsilon type (PKCε), which inhibits the signaling pathway from the insulin receptor to insulin receptor substrate 1 (IRS-1), the first postreceptor step in intracellular insulin action (46). Thus, under circumstances of chronic energy excess, a raised level of intracellular diacylglycerol specifically prevents normal insulin action, and hepatic glucose production fails to be controlled (Fig. 4). High-fat feeding of rodents brings about raised levels of diacylglycerol, PKCε activation, and insulin resistance. However, if fatty acids are preferentially oxidized rather than esterified to diacylglycerol, then PKCε activation is prevented, and hepatic insulin sensitivity is maintained. The molecular specificity of this mechanism has been confirmed by use of antisense oligonucleotide to PKCε, which prevents hepatic insulin resistance despite raised diacylglycerol levels during high-fat feeding (47). In obese humans, intrahepatic diacylglycerol concentration has been shown to correlate with hepatic insulin sensitivity (48,49). Additionally, the presence of excess fatty acids promotes ceramide synthesis by esterification with sphingosine. Ceramides cause sequestration of Akt2 and activation of gluconeogenic enzymes (Fig. 4), although no relationship with in vivo insulin resistance could be demonstrated in humans (49). However, the described intracellular regulatory roles of diacylglycerol and ceramide are consistent with the in vivo observations of hepatic steatosis and control of hepatic glucose production (20,21).
There have been some small, limited studies as well as anecdotal reports that certain alternative or “natural” treatments can help control blood glucose levels in people with diabetes or otherwise prevent the condition or prevent its complications. These can include herbs or dietary supplements. Examples include garlic, cinnamon, alpha-lipoic acid, aloe vera, chromium, ginseng, and magnesium.
Some studies suggest that low magnesium levels may worsen blood glucose control in type 2 diabetes. There is also some evidence that magnesium supplementation may help with insulin resistance. For example, a study examined the effect of magnesium or placebo in 63 people with type 2 diabetes and low magnesium levels who were taking the medication glibenclamide. After 16 weeks, people who took magnesium had improved insulin sensitivity and lower fasting glucose levels.
There was a clinical trial conducted at Department of Biochemistry, Postgraduate Institute of Basic Medical Sciences Madras, India that studied 22 patients with type 2 diabetes. It reported that supplementing the body with 400 mg of Gymnema Sylvestre extract daily resulted in remarkable reductions in blood glucose levels, hemoglobin A1c and glycosylated plasma protein levels. What’s even more remarkable is that by the end of this 18 month study, participants were able to reduce the dosage of their prescription diabetes medication. Five were even completely off medication and attaining stable blood sugar levels with Gymnema Sylvestre supplementation alone.
It’s the patients with type 2 diabetes that lean towards supplements. While lifestyle modifications (exercise, weight loss, and smoking cessation) are the foundation for managing diabetes, drug treatment is usually also required. There are an array of prescription drugs like metformin and glyburide with a long history of use and demonstrated efficacy. Some drugs even decrease mortality – the primary outcome we’re after. But proper treatment has also been shown to the reduce the risk of an array of other consequences: Diabetes is the biggest cause of blindness, kidney failure and non-traumatic amputation. Diabetes is associated with an elevated risk of cardiovascular disease, too. Yet despite the irreversible consequences of diabetes, and the availability of effective medications, type 2 diabetes remains poorly-controlled in many, often because of poor self-management.
A useful test that has usually been done in a laboratory is the measurement of blood HbA1c levels. This is the ratio of glycated hemoglobin in relation to the total hemoglobin. Persistent raised plasma glucose levels cause the proportion of these molecules to go up. This is a test that measures the average amount of diabetic control over a period originally thought to be about 3 months (the average red blood cell lifetime), but more recently[when?] thought to be more strongly weighted to the most recent 2 to 4 weeks. In the non-diabetic, the HbA1c level ranges from 4.0–6.0%; patients with diabetes mellitus who manage to keep their HbA1c level below 6.5% are considered to have good glycemic control. The HbA1c test is not appropriate if there has been changes to diet or treatment within shorter time periods than 6 weeks or there is disturbance of red cell aging (e.g. recent bleeding or hemolytic anemia) or a hemoglobinopathy (e.g. sickle cell disease). In such cases the alternative Fructosamine test is used to indicate average control in the preceding 2 to 3 weeks.

In the study, Fung and his team randomly recruited three men, ages 40 to 67, with type 2 diabetes, who also had high cholesterol and high blood pressure. At the start of the study, the authors recorded the participants’ vitals, including their A1C (a three-month average of their blood sugar levels), their fasting blood glucose levels, their waist circumference, and their weight. All three men were on insulin and oral medication.
Benefits of control and reduced hospital admission have been reported.[26] However, patients on oral medication who do not self-adjust their drug dosage will miss many of the benefits of self-testing, and so it is questionable in this group. This is particularly so for patients taking monotherapy with metformin who are not at risk of hypoglycaemia. Regular 6 monthly laboratory testing of HbA1c (glycated haemoglobin) provides some assurance of long-term effective control and allows the adjustment of the patient's routine medication dosages in such cases. High frequency of self-testing in type 2 diabetes has not been shown to be associated with improved control.[27] The argument is made, though, that type 2 patients with poor long term control despite home blood glucose monitoring, either have not had this integrated into their overall management, or are long overdue for tighter control by a switch from oral medication to injected insulin.[28]
Treatment for diabetes requires keeping close watch over your blood sugar levels (and keeping them at a goal set by your doctor) with a combination of medications, exercise, and diet. By paying close attention to what and when you eat, you can minimize or avoid the "seesaw effect" of rapidly changing blood sugar levels, which can require quick changes in medication dosages, especially insulin.
Exenatide (Byetta) was the first drug of the GLP-1 agonist group. It originated from an interesting source, the saliva of the Gila monster. Scientists observed that this small lizard could go a long time without eating. They discovered a substance in its saliva that slowed stomach emptying, thus making the lizard feel fuller for a longer time. This substance resembled the hormone GLP-1.